Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-2}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}=2
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-2}{-1} kasrini 2 ga soddalashtirish mumkin.
x=\sqrt{2} x=-\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-x^{2}+2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-1\right)\times 2}}{2\left(-1\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\times 2}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{0±\sqrt{8}}{2\left(-1\right)}
4 ni 2 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{2}}{2\left(-1\right)}
8 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\sqrt{2}
x=\frac{0±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± musbat.
x=\sqrt{2}
x=\frac{0±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± manfiy.
x=-\sqrt{2} x=\sqrt{2}
Tenglama yechildi.