Baholash
-\frac{25}{33}\approx -0,757575758
Omil
-\frac{25}{33} = -0,7575757575757576
Baham ko'rish
Klipbordga nusxa olish
-1-\frac{\left(1-0\times 5\right)\times \frac{2^{3}}{3}}{-2-\left(-3\right)^{2}}
4 daraja ko‘rsatkichini 1 ga hisoblang va 1 ni qiymatni oling.
-1-\frac{\left(1-0\right)\times \frac{2^{3}}{3}}{-2-\left(-3\right)^{2}}
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
-1-\frac{1\times \frac{2^{3}}{3}}{-2-\left(-3\right)^{2}}
1 olish uchun 1 dan 0 ni ayirish.
-1-\frac{1\times \frac{8}{3}}{-2-\left(-3\right)^{2}}
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
-1-\frac{\frac{8}{3}}{-2-\left(-3\right)^{2}}
\frac{8}{3} hosil qilish uchun 1 va \frac{8}{3} ni ko'paytirish.
-1-\frac{\frac{8}{3}}{-2-9}
2 daraja ko‘rsatkichini -3 ga hisoblang va 9 ni qiymatni oling.
-1-\frac{\frac{8}{3}}{-11}
-11 olish uchun -2 dan 9 ni ayirish.
-1-\frac{8}{3\left(-11\right)}
\frac{\frac{8}{3}}{-11} ni yagona kasrga aylantiring.
-1-\frac{8}{-33}
-33 hosil qilish uchun 3 va -11 ni ko'paytirish.
-1-\left(-\frac{8}{33}\right)
\frac{8}{-33} kasri manfiy belgini olib tashlash bilan -\frac{8}{33} sifatida qayta yozilishi mumkin.
-1+\frac{8}{33}
-\frac{8}{33} ning teskarisi \frac{8}{33} ga teng.
-\frac{33}{33}+\frac{8}{33}
-1 ni -\frac{33}{33} kasrga o‘giring.
\frac{-33+8}{33}
-\frac{33}{33} va \frac{8}{33} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{25}{33}
-25 olish uchun -33 va 8'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}