x uchun yechish
x=\frac{\sqrt{93}}{6}+\frac{1}{2}\approx 2,107275127
x=-\frac{\sqrt{93}}{6}+\frac{1}{2}\approx -1,107275127
Grafik
Baham ko'rish
Klipbordga nusxa olish
-1=3x^{2}-4x-8+x
-4 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-1=3x^{2}-3x-8
-3x ni olish uchun -4x va x ni birlashtirish.
3x^{2}-3x-8=-1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
3x^{2}-3x-8+1=0
1 ni ikki tarafga qo’shing.
3x^{2}-3x-7=0
-7 olish uchun -8 va 1'ni qo'shing.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -3 ni b va -7 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\left(-7\right)}}{2\times 3}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-12\left(-7\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+84}}{2\times 3}
-12 ni -7 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{93}}{2\times 3}
9 ni 84 ga qo'shish.
x=\frac{3±\sqrt{93}}{2\times 3}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{93}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{93}+3}{6}
x=\frac{3±\sqrt{93}}{6} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{93} ga qo'shish.
x=\frac{\sqrt{93}}{6}+\frac{1}{2}
3+\sqrt{93} ni 6 ga bo'lish.
x=\frac{3-\sqrt{93}}{6}
x=\frac{3±\sqrt{93}}{6} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{93} ni ayirish.
x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
3-\sqrt{93} ni 6 ga bo'lish.
x=\frac{\sqrt{93}}{6}+\frac{1}{2} x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
Tenglama yechildi.
-1=3x^{2}-4x-8+x
-4 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-1=3x^{2}-3x-8
-3x ni olish uchun -4x va x ni birlashtirish.
3x^{2}-3x-8=-1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
3x^{2}-3x=-1+8
8 ni ikki tarafga qo’shing.
3x^{2}-3x=7
7 olish uchun -1 va 8'ni qo'shing.
\frac{3x^{2}-3x}{3}=\frac{7}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{3}{3}\right)x=\frac{7}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{7}{3}
-3 ni 3 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{7}{3}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{7}{3}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{31}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{3} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=\frac{31}{12}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{93}}{6} x-\frac{1}{2}=-\frac{\sqrt{93}}{6}
Qisqartirish.
x=\frac{\sqrt{93}}{6}+\frac{1}{2} x=-\frac{\sqrt{93}}{6}+\frac{1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}