x uchun yechish (complex solution)
x=\frac{-\sqrt{39}i-3}{2}\approx -1,5-3,122498999i
x=\frac{-3+\sqrt{39}i}{2}\approx -1,5+3,122498999i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(-x-1\right)\left(x+4\right)-x+3x=8
x+1 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-4x-x-4-x+3x=8
-x-1 ifodaning har bir elementini x+4 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
-x^{2}-5x-4-x+3x=8
-5x ni olish uchun -4x va -x ni birlashtirish.
-x^{2}-6x-4+3x=8
-6x ni olish uchun -5x va -x ni birlashtirish.
-x^{2}-3x-4=8
-3x ni olish uchun -6x va 3x ni birlashtirish.
-x^{2}-3x-4-8=0
Ikkala tarafdan 8 ni ayirish.
-x^{2}-3x-12=0
-12 olish uchun -4 dan 8 ni ayirish.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -3 ni b va -12 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+4\left(-12\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9-48}}{2\left(-1\right)}
4 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{-39}}{2\left(-1\right)}
9 ni -48 ga qo'shish.
x=\frac{-\left(-3\right)±\sqrt{39}i}{2\left(-1\right)}
-39 ning kvadrat ildizini chiqarish.
x=\frac{3±\sqrt{39}i}{2\left(-1\right)}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{39}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{3+\sqrt{39}i}{-2}
x=\frac{3±\sqrt{39}i}{-2} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{39} ga qo'shish.
x=\frac{-\sqrt{39}i-3}{2}
3+i\sqrt{39} ni -2 ga bo'lish.
x=\frac{-\sqrt{39}i+3}{-2}
x=\frac{3±\sqrt{39}i}{-2} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{39} ni ayirish.
x=\frac{-3+\sqrt{39}i}{2}
3-i\sqrt{39} ni -2 ga bo'lish.
x=\frac{-\sqrt{39}i-3}{2} x=\frac{-3+\sqrt{39}i}{2}
Tenglama yechildi.
\left(-x-1\right)\left(x+4\right)-x+3x=8
x+1 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-4x-x-4-x+3x=8
-x-1 ifodaning har bir elementini x+4 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
-x^{2}-5x-4-x+3x=8
-5x ni olish uchun -4x va -x ni birlashtirish.
-x^{2}-6x-4+3x=8
-6x ni olish uchun -5x va -x ni birlashtirish.
-x^{2}-3x-4=8
-3x ni olish uchun -6x va 3x ni birlashtirish.
-x^{2}-3x=8+4
4 ni ikki tarafga qo’shing.
-x^{2}-3x=12
12 olish uchun 8 va 4'ni qo'shing.
\frac{-x^{2}-3x}{-1}=\frac{12}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{3}{-1}\right)x=\frac{12}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{12}{-1}
-3 ni -1 ga bo'lish.
x^{2}+3x=-12
12 ni -1 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-12+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=-12+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=-\frac{39}{4}
-12 ni \frac{9}{4} ga qo'shish.
\left(x+\frac{3}{2}\right)^{2}=-\frac{39}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{39}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{39}i}{2} x+\frac{3}{2}=-\frac{\sqrt{39}i}{2}
Qisqartirish.
x=\frac{-3+\sqrt{39}i}{2} x=\frac{-\sqrt{39}i-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}