x uchun yechish
x=2\sqrt{11}-3\approx 3,633249581
x=-2\sqrt{11}-3\approx -9,633249581
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}-6x+35=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 35}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -6 ni b va 35 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 35}}{2\left(-1\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 35}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+140}}{2\left(-1\right)}
4 ni 35 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{176}}{2\left(-1\right)}
36 ni 140 ga qo'shish.
x=\frac{-\left(-6\right)±4\sqrt{11}}{2\left(-1\right)}
176 ning kvadrat ildizini chiqarish.
x=\frac{6±4\sqrt{11}}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±4\sqrt{11}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{11}+6}{-2}
x=\frac{6±4\sqrt{11}}{-2} tenglamasini yeching, bunda ± musbat. 6 ni 4\sqrt{11} ga qo'shish.
x=-2\sqrt{11}-3
6+4\sqrt{11} ni -2 ga bo'lish.
x=\frac{6-4\sqrt{11}}{-2}
x=\frac{6±4\sqrt{11}}{-2} tenglamasini yeching, bunda ± manfiy. 6 dan 4\sqrt{11} ni ayirish.
x=2\sqrt{11}-3
6-4\sqrt{11} ni -2 ga bo'lish.
x=-2\sqrt{11}-3 x=2\sqrt{11}-3
Tenglama yechildi.
-x^{2}-6x+35=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-6x+35-35=-35
Tenglamaning ikkala tarafidan 35 ni ayirish.
-x^{2}-6x=-35
O‘zidan 35 ayirilsa 0 qoladi.
\frac{-x^{2}-6x}{-1}=-\frac{35}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{35}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+6x=-\frac{35}{-1}
-6 ni -1 ga bo'lish.
x^{2}+6x=35
-35 ni -1 ga bo'lish.
x^{2}+6x+3^{2}=35+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=35+9
3 kvadratini chiqarish.
x^{2}+6x+9=44
35 ni 9 ga qo'shish.
\left(x+3\right)^{2}=44
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{44}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=2\sqrt{11} x+3=-2\sqrt{11}
Qisqartirish.
x=2\sqrt{11}-3 x=-2\sqrt{11}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}