Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+2x+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 2}}{2\left(-1\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+4\times 2}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+8}}{2\left(-1\right)}
4 ni 2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{12}}{2\left(-1\right)}
4 ni 8 ga qo'shish.
x=\frac{-2±2\sqrt{3}}{2\left(-1\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{3}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{3}-2}{-2}
x=\frac{-2±2\sqrt{3}}{-2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{3} ga qo'shish.
x=1-\sqrt{3}
-2+2\sqrt{3} ni -2 ga bo'lish.
x=\frac{-2\sqrt{3}-2}{-2}
x=\frac{-2±2\sqrt{3}}{-2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{3} ni ayirish.
x=\sqrt{3}+1
-2-2\sqrt{3} ni -2 ga bo'lish.
-x^{2}+2x+2=-\left(x-\left(1-\sqrt{3}\right)\right)\left(x-\left(\sqrt{3}+1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 1-\sqrt{3} ga va x_{2} uchun 1+\sqrt{3} ga bo‘ling.