Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+25x+15=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-25±\sqrt{25^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-25±\sqrt{625-4\left(-1\right)\times 15}}{2\left(-1\right)}
25 kvadratini chiqarish.
x=\frac{-25±\sqrt{625+4\times 15}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{625+60}}{2\left(-1\right)}
4 ni 15 marotabaga ko'paytirish.
x=\frac{-25±\sqrt{685}}{2\left(-1\right)}
625 ni 60 ga qo'shish.
x=\frac{-25±\sqrt{685}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{685}-25}{-2}
x=\frac{-25±\sqrt{685}}{-2} tenglamasini yeching, bunda ± musbat. -25 ni \sqrt{685} ga qo'shish.
x=\frac{25-\sqrt{685}}{2}
-25+\sqrt{685} ni -2 ga bo'lish.
x=\frac{-\sqrt{685}-25}{-2}
x=\frac{-25±\sqrt{685}}{-2} tenglamasini yeching, bunda ± manfiy. -25 dan \sqrt{685} ni ayirish.
x=\frac{\sqrt{685}+25}{2}
-25-\sqrt{685} ni -2 ga bo'lish.
-x^{2}+25x+15=-\left(x-\frac{25-\sqrt{685}}{2}\right)\left(x-\frac{\sqrt{685}+25}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{25-\sqrt{685}}{2} ga va x_{2} uchun \frac{25+\sqrt{685}}{2} ga bo‘ling.