Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+16x-51=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-51\right)}}{2\left(-1\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-51\right)}}{2\left(-1\right)}
16 kvadratini chiqarish.
x=\frac{-16±\sqrt{256+4\left(-51\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{256-204}}{2\left(-1\right)}
4 ni -51 marotabaga ko'paytirish.
x=\frac{-16±\sqrt{52}}{2\left(-1\right)}
256 ni -204 ga qo'shish.
x=\frac{-16±2\sqrt{13}}{2\left(-1\right)}
52 ning kvadrat ildizini chiqarish.
x=\frac{-16±2\sqrt{13}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{13}-16}{-2}
x=\frac{-16±2\sqrt{13}}{-2} tenglamasini yeching, bunda ± musbat. -16 ni 2\sqrt{13} ga qo'shish.
x=8-\sqrt{13}
-16+2\sqrt{13} ni -2 ga bo'lish.
x=\frac{-2\sqrt{13}-16}{-2}
x=\frac{-16±2\sqrt{13}}{-2} tenglamasini yeching, bunda ± manfiy. -16 dan 2\sqrt{13} ni ayirish.
x=\sqrt{13}+8
-16-2\sqrt{13} ni -2 ga bo'lish.
-x^{2}+16x-51=-\left(x-\left(8-\sqrt{13}\right)\right)\left(x-\left(\sqrt{13}+8\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 8-\sqrt{13} ga va x_{2} uchun 8+\sqrt{13} ga bo‘ling.