Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}+10x-81=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 10 ni b va -81 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+4\left(-81\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100-324}}{2\left(-1\right)}
4 ni -81 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{-224}}{2\left(-1\right)}
100 ni -324 ga qo'shish.
x=\frac{-10±4\sqrt{14}i}{2\left(-1\right)}
-224 ning kvadrat ildizini chiqarish.
x=\frac{-10±4\sqrt{14}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-10+4\sqrt{14}i}{-2}
x=\frac{-10±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± musbat. -10 ni 4i\sqrt{14} ga qo'shish.
x=-2\sqrt{14}i+5
-10+4i\sqrt{14} ni -2 ga bo'lish.
x=\frac{-4\sqrt{14}i-10}{-2}
x=\frac{-10±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± manfiy. -10 dan 4i\sqrt{14} ni ayirish.
x=5+2\sqrt{14}i
-10-4i\sqrt{14} ni -2 ga bo'lish.
x=-2\sqrt{14}i+5 x=5+2\sqrt{14}i
Tenglama yechildi.
-x^{2}+10x-81=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+10x-81-\left(-81\right)=-\left(-81\right)
81 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}+10x=-\left(-81\right)
O‘zidan -81 ayirilsa 0 qoladi.
-x^{2}+10x=81
0 dan -81 ni ayirish.
\frac{-x^{2}+10x}{-1}=\frac{81}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{10}{-1}x=\frac{81}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{81}{-1}
10 ni -1 ga bo'lish.
x^{2}-10x=-81
81 ni -1 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=-81+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-81+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-56
-81 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-56
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-56}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=2\sqrt{14}i x-5=-2\sqrt{14}i
Qisqartirish.
x=5+2\sqrt{14}i x=-2\sqrt{14}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.