x uchun yechish (complex solution)
x=-2\sqrt{14}i+5\approx 5-7,483314774i
x=5+2\sqrt{14}i\approx 5+7,483314774i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+10x-81=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 10 ni b va -81 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+4\left(-81\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100-324}}{2\left(-1\right)}
4 ni -81 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{-224}}{2\left(-1\right)}
100 ni -324 ga qo'shish.
x=\frac{-10±4\sqrt{14}i}{2\left(-1\right)}
-224 ning kvadrat ildizini chiqarish.
x=\frac{-10±4\sqrt{14}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-10+4\sqrt{14}i}{-2}
x=\frac{-10±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± musbat. -10 ni 4i\sqrt{14} ga qo'shish.
x=-2\sqrt{14}i+5
-10+4i\sqrt{14} ni -2 ga bo'lish.
x=\frac{-4\sqrt{14}i-10}{-2}
x=\frac{-10±4\sqrt{14}i}{-2} tenglamasini yeching, bunda ± manfiy. -10 dan 4i\sqrt{14} ni ayirish.
x=5+2\sqrt{14}i
-10-4i\sqrt{14} ni -2 ga bo'lish.
x=-2\sqrt{14}i+5 x=5+2\sqrt{14}i
Tenglama yechildi.
-x^{2}+10x-81=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+10x-81-\left(-81\right)=-\left(-81\right)
81 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}+10x=-\left(-81\right)
O‘zidan -81 ayirilsa 0 qoladi.
-x^{2}+10x=81
0 dan -81 ni ayirish.
\frac{-x^{2}+10x}{-1}=\frac{81}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{10}{-1}x=\frac{81}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-10x=\frac{81}{-1}
10 ni -1 ga bo'lish.
x^{2}-10x=-81
81 ni -1 ga bo'lish.
x^{2}-10x+\left(-5\right)^{2}=-81+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=-81+25
-5 kvadratini chiqarish.
x^{2}-10x+25=-56
-81 ni 25 ga qo'shish.
\left(x-5\right)^{2}=-56
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-56}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=2\sqrt{14}i x-5=-2\sqrt{14}i
Qisqartirish.
x=5+2\sqrt{14}i x=-2\sqrt{14}i+5
5 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}