Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
-x^{2}-6x-9-4\left(3x+1\right)=0
x^{2}+6x+9 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-6x-9-12x-4=0
-4 ga 3x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}-18x-9-4=0
-18x ni olish uchun -6x va -12x ni birlashtirish.
-x^{2}-18x-13=0
-13 olish uchun -9 dan 4 ni ayirish.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -18 ni b va -13 ni c bilan almashtiring.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
-18 kvadratini chiqarish.
x=\frac{-\left(-18\right)±\sqrt{324+4\left(-13\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{324-52}}{2\left(-1\right)}
4 ni -13 marotabaga ko'paytirish.
x=\frac{-\left(-18\right)±\sqrt{272}}{2\left(-1\right)}
324 ni -52 ga qo'shish.
x=\frac{-\left(-18\right)±4\sqrt{17}}{2\left(-1\right)}
272 ning kvadrat ildizini chiqarish.
x=\frac{18±4\sqrt{17}}{2\left(-1\right)}
-18 ning teskarisi 18 ga teng.
x=\frac{18±4\sqrt{17}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4\sqrt{17}+18}{-2}
x=\frac{18±4\sqrt{17}}{-2} tenglamasini yeching, bunda ± musbat. 18 ni 4\sqrt{17} ga qo'shish.
x=-2\sqrt{17}-9
18+4\sqrt{17} ni -2 ga bo'lish.
x=\frac{18-4\sqrt{17}}{-2}
x=\frac{18±4\sqrt{17}}{-2} tenglamasini yeching, bunda ± manfiy. 18 dan 4\sqrt{17} ni ayirish.
x=2\sqrt{17}-9
18-4\sqrt{17} ni -2 ga bo'lish.
x=-2\sqrt{17}-9 x=2\sqrt{17}-9
Tenglama yechildi.
-\left(x^{2}+6x+9\right)-4\left(3x+1\right)=0
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+3\right)^{2} kengaytirilishi uchun ishlating.
-x^{2}-6x-9-4\left(3x+1\right)=0
x^{2}+6x+9 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-6x-9-12x-4=0
-4 ga 3x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-x^{2}-18x-9-4=0
-18x ni olish uchun -6x va -12x ni birlashtirish.
-x^{2}-18x-13=0
-13 olish uchun -9 dan 4 ni ayirish.
-x^{2}-18x=13
13 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{-x^{2}-18x}{-1}=\frac{13}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{18}{-1}\right)x=\frac{13}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+18x=\frac{13}{-1}
-18 ni -1 ga bo'lish.
x^{2}+18x=-13
13 ni -1 ga bo'lish.
x^{2}+18x+9^{2}=-13+9^{2}
18 ni bo‘lish, x shartining koeffitsienti, 2 ga 9 olish uchun. Keyin, 9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+18x+81=-13+81
9 kvadratini chiqarish.
x^{2}+18x+81=68
-13 ni 81 ga qo'shish.
\left(x+9\right)^{2}=68
x^{2}+18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+9\right)^{2}}=\sqrt{68}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+9=2\sqrt{17} x+9=-2\sqrt{17}
Qisqartirish.
x=2\sqrt{17}-9 x=-2\sqrt{17}-9
Tenglamaning ikkala tarafidan 9 ni ayirish.