x uchun yechish
x=-2
x=\frac{1}{2}=0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
2\left(-\frac{x}{2}\right)\left(1-2x\right)+2x=2-2x
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
\frac{-2x}{2}\left(1-2x\right)+2x=2-2x
2\left(-\frac{x}{2}\right) ni yagona kasrga aylantiring.
-x\left(1-2x\right)+2x=2-2x
2 va 2 ni qisqartiring.
-x+2x^{2}+2x=2-2x
-x ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x+2x^{2}=2-2x
x ni olish uchun -x va 2x ni birlashtirish.
x+2x^{2}-2=-2x
Ikkala tarafdan 2 ni ayirish.
x+2x^{2}-2+2x=0
2x ni ikki tarafga qo’shing.
3x+2x^{2}-2=0
3x ni olish uchun x va 2x ni birlashtirish.
2x^{2}+3x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 3 ni b va -2 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 2\left(-2\right)}}{2\times 2}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{25}}{2\times 2}
9 ni 16 ga qo'shish.
x=\frac{-3±5}{2\times 2}
25 ning kvadrat ildizini chiqarish.
x=\frac{-3±5}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2}{4}
x=\frac{-3±5}{4} tenglamasini yeching, bunda ± musbat. -3 ni 5 ga qo'shish.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{8}{4}
x=\frac{-3±5}{4} tenglamasini yeching, bunda ± manfiy. -3 dan 5 ni ayirish.
x=-2
-8 ni 4 ga bo'lish.
x=\frac{1}{2} x=-2
Tenglama yechildi.
2\left(-\frac{x}{2}\right)\left(1-2x\right)+2x=2-2x
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
\frac{-2x}{2}\left(1-2x\right)+2x=2-2x
2\left(-\frac{x}{2}\right) ni yagona kasrga aylantiring.
-x\left(1-2x\right)+2x=2-2x
2 va 2 ni qisqartiring.
-x+2x^{2}+2x=2-2x
-x ga 1-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x+2x^{2}=2-2x
x ni olish uchun -x va 2x ni birlashtirish.
x+2x^{2}+2x=2
2x ni ikki tarafga qo’shing.
3x+2x^{2}=2
3x ni olish uchun x va 2x ni birlashtirish.
2x^{2}+3x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}+3x}{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{3}{2}x=\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x=1
2 ni 2 ga bo'lish.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=1+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
1 ni \frac{9}{16} ga qo'shish.
\left(x+\frac{3}{4}\right)^{2}=\frac{25}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{5}{4} x+\frac{3}{4}=-\frac{5}{4}
Qisqartirish.
x=\frac{1}{2} x=-2
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}