Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
x\left(-\frac{4}{3}-\frac{1}{2}x\right)=0
x omili.
x=0 x=-\frac{8}{3}
Tenglamani yechish uchun x=0 va -\frac{4}{3}-\frac{x}{2}=0 ni yeching.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, -\frac{4}{3} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
\left(-\frac{4}{3}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{4}{3}±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
-\frac{4}{3} ning teskarisi \frac{4}{3} ga teng.
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{\frac{8}{3}}{-1}
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni \frac{4}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{8}{3}
\frac{8}{3} ni -1 ga bo'lish.
x=\frac{0}{-1}
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{4}{3} ni \frac{4}{3} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -1 ga bo'lish.
x=-\frac{8}{3} x=0
Tenglama yechildi.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{4}{3}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{4}{3}}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{3}x=\frac{0}{-\frac{1}{2}}
-\frac{4}{3} ni -\frac{1}{2} ga bo'lish -\frac{4}{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{8}{3}x=0
0 ni -\frac{1}{2} ga bo'lish 0 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{3} olish uchun. Keyin, \frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{3} kvadratini chiqarish.
\left(x+\frac{4}{3}\right)^{2}=\frac{16}{9}
x^{2}+\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{3}=\frac{4}{3} x+\frac{4}{3}=-\frac{4}{3}
Qisqartirish.
x=0 x=-\frac{8}{3}
Tenglamaning ikkala tarafidan \frac{4}{3} ni ayirish.