x uchun yechish
x = -\frac{8}{3} = -2\frac{2}{3} \approx -2,666666667
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
x\left(-\frac{4}{3}-\frac{1}{2}x\right)=0
x omili.
x=0 x=-\frac{8}{3}
Tenglamani yechish uchun x=0 va -\frac{4}{3}-\frac{x}{2}=0 ni yeching.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, -\frac{4}{3} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
\left(-\frac{4}{3}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{4}{3}±\frac{4}{3}}{2\left(-\frac{1}{2}\right)}
-\frac{4}{3} ning teskarisi \frac{4}{3} ga teng.
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{\frac{8}{3}}{-1}
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{4}{3} ni \frac{4}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{8}{3}
\frac{8}{3} ni -1 ga bo'lish.
x=\frac{0}{-1}
x=\frac{\frac{4}{3}±\frac{4}{3}}{-1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{4}{3} ni \frac{4}{3} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -1 ga bo'lish.
x=-\frac{8}{3} x=0
Tenglama yechildi.
-\frac{4}{3}x-\frac{1}{2}x^{2}=0
Ikkala tarafdan \frac{1}{2}x^{2} ni ayirish.
-\frac{1}{2}x^{2}-\frac{4}{3}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}-\frac{4}{3}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{4}{3}}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{3}x=\frac{0}{-\frac{1}{2}}
-\frac{4}{3} ni -\frac{1}{2} ga bo'lish -\frac{4}{3} ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{8}{3}x=0
0 ni -\frac{1}{2} ga bo'lish 0 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}
\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{3} olish uchun. Keyin, \frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{3} kvadratini chiqarish.
\left(x+\frac{4}{3}\right)^{2}=\frac{16}{9}
x^{2}+\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{3}=\frac{4}{3} x+\frac{4}{3}=-\frac{4}{3}
Qisqartirish.
x=0 x=-\frac{8}{3}
Tenglamaning ikkala tarafidan \frac{4}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}