x uchun yechish
x=-1
x=16
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
- \frac{ 1 }{ 5 } { x }^{ 2 } +3x+ \frac{ 16 }{ 5 } =0
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{5}x^{2}+3x+\frac{16}{5}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\left(-\frac{1}{5}\right)\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{5} ni a, 3 ni b va \frac{16}{5} ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-\frac{1}{5}\right)\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+\frac{4}{5}\times \frac{16}{5}}}{2\left(-\frac{1}{5}\right)}
-4 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+\frac{64}{25}}}{2\left(-\frac{1}{5}\right)}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{4}{5} ni \frac{16}{5} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-3±\sqrt{\frac{289}{25}}}{2\left(-\frac{1}{5}\right)}
9 ni \frac{64}{25} ga qo'shish.
x=\frac{-3±\frac{17}{5}}{2\left(-\frac{1}{5}\right)}
\frac{289}{25} ning kvadrat ildizini chiqarish.
x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}}
2 ni -\frac{1}{5} marotabaga ko'paytirish.
x=\frac{\frac{2}{5}}{-\frac{2}{5}}
x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± musbat. -3 ni \frac{17}{5} ga qo'shish.
x=-1
\frac{2}{5} ni -\frac{2}{5} ga bo'lish \frac{2}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=-\frac{\frac{32}{5}}{-\frac{2}{5}}
x=\frac{-3±\frac{17}{5}}{-\frac{2}{5}} tenglamasini yeching, bunda ± manfiy. -3 dan \frac{17}{5} ni ayirish.
x=16
-\frac{32}{5} ni -\frac{2}{5} ga bo'lish -\frac{32}{5} ga k'paytirish -\frac{2}{5} ga qaytarish.
x=-1 x=16
Tenglama yechildi.
-\frac{1}{5}x^{2}+3x+\frac{16}{5}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-\frac{1}{5}x^{2}+3x+\frac{16}{5}-\frac{16}{5}=-\frac{16}{5}
Tenglamaning ikkala tarafidan \frac{16}{5} ni ayirish.
-\frac{1}{5}x^{2}+3x=-\frac{16}{5}
O‘zidan \frac{16}{5} ayirilsa 0 qoladi.
\frac{-\frac{1}{5}x^{2}+3x}{-\frac{1}{5}}=-\frac{\frac{16}{5}}{-\frac{1}{5}}
Ikkala tarafini -5 ga ko‘paytiring.
x^{2}+\frac{3}{-\frac{1}{5}}x=-\frac{\frac{16}{5}}{-\frac{1}{5}}
-\frac{1}{5} ga bo'lish -\frac{1}{5} ga ko'paytirishni bekor qiladi.
x^{2}-15x=-\frac{\frac{16}{5}}{-\frac{1}{5}}
3 ni -\frac{1}{5} ga bo'lish 3 ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}-15x=16
-\frac{16}{5} ni -\frac{1}{5} ga bo'lish -\frac{16}{5} ga k'paytirish -\frac{1}{5} ga qaytarish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=16+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=16+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{289}{4}
16 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{289}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{289}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{17}{2} x-\frac{15}{2}=-\frac{17}{2}
Qisqartirish.
x=16 x=-1
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}