x uchun yechish
x=-2\sqrt{3}-\frac{1}{3}\approx -3,797434948
x=2\sqrt{3}-\frac{1}{3}\approx 3,130768282
Grafik
Baham ko'rish
Klipbordga nusxa olish
-3\left(-36\right)=\left(3x+1\right)^{2}
x qiymati -\frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(3x+1\right)^{2} ga, \left(1+3x\right)^{2},3 ning eng kichik karralisiga ko‘paytiring.
108=\left(3x+1\right)^{2}
108 hosil qilish uchun -3 va -36 ni ko'paytirish.
108=9x^{2}+6x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1=108
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
9x^{2}+6x+1-108=0
Ikkala tarafdan 108 ni ayirish.
9x^{2}+6x-107=0
-107 olish uchun 1 dan 108 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-107\right)}}{2\times 9}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 9 ni a, 6 ni b va -107 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 9\left(-107\right)}}{2\times 9}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-36\left(-107\right)}}{2\times 9}
-4 ni 9 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+3852}}{2\times 9}
-36 ni -107 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{3888}}{2\times 9}
36 ni 3852 ga qo'shish.
x=\frac{-6±36\sqrt{3}}{2\times 9}
3888 ning kvadrat ildizini chiqarish.
x=\frac{-6±36\sqrt{3}}{18}
2 ni 9 marotabaga ko'paytirish.
x=\frac{36\sqrt{3}-6}{18}
x=\frac{-6±36\sqrt{3}}{18} tenglamasini yeching, bunda ± musbat. -6 ni 36\sqrt{3} ga qo'shish.
x=2\sqrt{3}-\frac{1}{3}
-6+36\sqrt{3} ni 18 ga bo'lish.
x=\frac{-36\sqrt{3}-6}{18}
x=\frac{-6±36\sqrt{3}}{18} tenglamasini yeching, bunda ± manfiy. -6 dan 36\sqrt{3} ni ayirish.
x=-2\sqrt{3}-\frac{1}{3}
-6-36\sqrt{3} ni 18 ga bo'lish.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
Tenglama yechildi.
-3\left(-36\right)=\left(3x+1\right)^{2}
x qiymati -\frac{1}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(3x+1\right)^{2} ga, \left(1+3x\right)^{2},3 ning eng kichik karralisiga ko‘paytiring.
108=\left(3x+1\right)^{2}
108 hosil qilish uchun -3 va -36 ni ko'paytirish.
108=9x^{2}+6x+1
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3x+1\right)^{2} kengaytirilishi uchun ishlating.
9x^{2}+6x+1=108
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
9x^{2}+6x=108-1
Ikkala tarafdan 1 ni ayirish.
9x^{2}+6x=107
107 olish uchun 108 dan 1 ni ayirish.
\frac{9x^{2}+6x}{9}=\frac{107}{9}
Ikki tarafini 9 ga bo‘ling.
x^{2}+\frac{6}{9}x=\frac{107}{9}
9 ga bo'lish 9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{2}{3}x=\frac{107}{9}
\frac{6}{9} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{107}{9}+\left(\frac{1}{3}\right)^{2}
\frac{2}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{3} olish uchun. Keyin, \frac{1}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{107+1}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{3} kvadratini chiqarish.
x^{2}+\frac{2}{3}x+\frac{1}{9}=12
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{107}{9} ni \frac{1}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{3}\right)^{2}=12
x^{2}+\frac{2}{3}x+\frac{1}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{12}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{3}=2\sqrt{3} x+\frac{1}{3}=-2\sqrt{3}
Qisqartirish.
x=2\sqrt{3}-\frac{1}{3} x=-2\sqrt{3}-\frac{1}{3}
Tenglamaning ikkala tarafidan \frac{1}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}