Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\frac{8}{9}=\left(4x-8\right)\left(x-3\right)
4 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{8}{9}=4x^{2}-20x+24
4x-8 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-20x+24=-\frac{8}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-20x+24+\frac{8}{9}=0
\frac{8}{9} ni ikki tarafga qo’shing.
4x^{2}-20x+\frac{224}{9}=0
\frac{224}{9} olish uchun 24 va \frac{8}{9}'ni qo'shing.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times \frac{224}{9}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -20 ni b va \frac{224}{9} ni c bilan almashtiring.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times \frac{224}{9}}}{2\times 4}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400-16\times \frac{224}{9}}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{400-\frac{3584}{9}}}{2\times 4}
-16 ni \frac{224}{9} marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{\frac{16}{9}}}{2\times 4}
400 ni -\frac{3584}{9} ga qo'shish.
x=\frac{-\left(-20\right)±\frac{4}{3}}{2\times 4}
\frac{16}{9} ning kvadrat ildizini chiqarish.
x=\frac{20±\frac{4}{3}}{2\times 4}
-20 ning teskarisi 20 ga teng.
x=\frac{20±\frac{4}{3}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\frac{64}{3}}{8}
x=\frac{20±\frac{4}{3}}{8} tenglamasini yeching, bunda ± musbat. 20 ni \frac{4}{3} ga qo'shish.
x=\frac{8}{3}
\frac{64}{3} ni 8 ga bo'lish.
x=\frac{\frac{56}{3}}{8}
x=\frac{20±\frac{4}{3}}{8} tenglamasini yeching, bunda ± manfiy. 20 dan \frac{4}{3} ni ayirish.
x=\frac{7}{3}
\frac{56}{3} ni 8 ga bo'lish.
x=\frac{8}{3} x=\frac{7}{3}
Tenglama yechildi.
-\frac{8}{9}=\left(4x-8\right)\left(x-3\right)
4 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{8}{9}=4x^{2}-20x+24
4x-8 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}-20x+24=-\frac{8}{9}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-20x=-\frac{8}{9}-24
Ikkala tarafdan 24 ni ayirish.
4x^{2}-20x=-\frac{224}{9}
-\frac{224}{9} olish uchun -\frac{8}{9} dan 24 ni ayirish.
\frac{4x^{2}-20x}{4}=-\frac{\frac{224}{9}}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{\frac{224}{9}}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-5x=-\frac{\frac{224}{9}}{4}
-20 ni 4 ga bo'lish.
x^{2}-5x=-\frac{56}{9}
-\frac{224}{9} ni 4 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{56}{9}+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-\frac{56}{9}+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{1}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{56}{9} ni \frac{25}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{2}\right)^{2}=\frac{1}{36}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{1}{6} x-\frac{5}{2}=-\frac{1}{6}
Qisqartirish.
x=\frac{8}{3} x=\frac{7}{3}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.