x uchun yechish
x=-\frac{1}{2}=-0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
1+\frac{2}{3}x=-\frac{1}{2}\left(-\frac{4}{3}\right)
Ikki tarafini -\frac{4}{3} va teskari kasri -\frac{3}{4} ga ko‘paytiring.
1+\frac{2}{3}x=\frac{-\left(-4\right)}{2\times 3}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{2} ni -\frac{4}{3} ga ko‘paytiring.
1+\frac{2}{3}x=\frac{4}{6}
\frac{-\left(-4\right)}{2\times 3} kasridagi ko‘paytirishlarni bajaring.
1+\frac{2}{3}x=\frac{2}{3}
\frac{4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{2}{3}x=\frac{2}{3}-1
Ikkala tarafdan 1 ni ayirish.
\frac{2}{3}x=\frac{2}{3}-\frac{3}{3}
1 ni \frac{3}{3} kasrga o‘giring.
\frac{2}{3}x=\frac{2-3}{3}
\frac{2}{3} va \frac{3}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{3}x=-\frac{1}{3}
-1 olish uchun 2 dan 3 ni ayirish.
x=-\frac{1}{3}\times \frac{3}{2}
Ikki tarafini \frac{3}{2} va teskari kasri \frac{2}{3} ga ko‘paytiring.
x=\frac{-3}{3\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{1}{3} ni \frac{3}{2} ga ko‘paytiring.
x=\frac{-1}{2}
Surat va maxrajdagi ikkala 3 ni qisqartiring.
x=-\frac{1}{2}
\frac{-1}{2} kasri manfiy belgini olib tashlash bilan -\frac{1}{2} sifatida qayta yozilishi mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}