x uchun yechish
x = \frac{\sqrt{39} + 8}{5} \approx 2,8489996
x=\frac{8-\sqrt{39}}{5}\approx 0,3510004
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
- \frac { 3 } { 3 } x ^ { 2 } + \frac { 16 } { 5 } x - 1 = 0
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+\frac{16}{5}x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{16}{5}±\sqrt{\left(\frac{16}{5}\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, \frac{16}{5} ni b va -1 ni c bilan almashtiring.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{16}{5} kvadratini chiqarish.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}+4\left(-1\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}-4}}{2\left(-1\right)}
4 ni -1 marotabaga ko'paytirish.
x=\frac{-\frac{16}{5}±\sqrt{\frac{156}{25}}}{2\left(-1\right)}
\frac{256}{25} ni -4 ga qo'shish.
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{2\left(-1\right)}
\frac{156}{25} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{39}-16}{-2\times 5}
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2} tenglamasini yeching, bunda ± musbat. -\frac{16}{5} ni \frac{2\sqrt{39}}{5} ga qo'shish.
x=\frac{8-\sqrt{39}}{5}
\frac{-16+2\sqrt{39}}{5} ni -2 ga bo'lish.
x=\frac{-2\sqrt{39}-16}{-2\times 5}
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2} tenglamasini yeching, bunda ± manfiy. -\frac{16}{5} dan \frac{2\sqrt{39}}{5} ni ayirish.
x=\frac{\sqrt{39}+8}{5}
\frac{-16-2\sqrt{39}}{5} ni -2 ga bo'lish.
x=\frac{8-\sqrt{39}}{5} x=\frac{\sqrt{39}+8}{5}
Tenglama yechildi.
-x^{2}+\frac{16}{5}x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+\frac{16}{5}x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
-x^{2}+\frac{16}{5}x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
-x^{2}+\frac{16}{5}x=1
0 dan -1 ni ayirish.
\frac{-x^{2}+\frac{16}{5}x}{-1}=\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{\frac{16}{5}}{-1}x=\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{16}{5}x=\frac{1}{-1}
\frac{16}{5} ni -1 ga bo'lish.
x^{2}-\frac{16}{5}x=-1
1 ni -1 ga bo'lish.
x^{2}-\frac{16}{5}x+\left(-\frac{8}{5}\right)^{2}=-1+\left(-\frac{8}{5}\right)^{2}
-\frac{16}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{8}{5} olish uchun. Keyin, -\frac{8}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{16}{5}x+\frac{64}{25}=-1+\frac{64}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{8}{5} kvadratini chiqarish.
x^{2}-\frac{16}{5}x+\frac{64}{25}=\frac{39}{25}
-1 ni \frac{64}{25} ga qo'shish.
\left(x-\frac{8}{5}\right)^{2}=\frac{39}{25}
x^{2}-\frac{16}{5}x+\frac{64}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{8}{5}\right)^{2}}=\sqrt{\frac{39}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{8}{5}=\frac{\sqrt{39}}{5} x-\frac{8}{5}=-\frac{\sqrt{39}}{5}
Qisqartirish.
x=\frac{\sqrt{39}+8}{5} x=\frac{8-\sqrt{39}}{5}
\frac{8}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}