Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Ikki tarafini -\frac{5}{2} va teskari kasri -\frac{2}{5} ga ko‘paytiring.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
\frac{15}{16} hosil qilish uchun -\frac{3}{8} va -\frac{5}{2} ni ko'paytirish.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x^{2}+\frac{1}{2}\right)^{2} kengaytirilishi uchun ishlating.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Ikkala tarafdan \frac{15}{16} ni ayirish.
x^{4}+x^{2}-\frac{11}{16}=0
-\frac{11}{16} olish uchun \frac{1}{4} dan \frac{15}{16} ni ayirish.
t^{2}+t-\frac{11}{16}=0
x^{2} uchun t ni almashtiring.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 1 ni va c uchun -\frac{11}{16} ni ayiring.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-\frac{\sqrt{\sqrt{15}-2}}{2} x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{i\sqrt{\sqrt{15}+2}}{2} x=\frac{i\sqrt{\sqrt{15}+2}}{2}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Ikki tarafini -\frac{5}{2} va teskari kasri -\frac{2}{5} ga ko‘paytiring.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
\frac{15}{16} hosil qilish uchun -\frac{3}{8} va -\frac{5}{2} ni ko'paytirish.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x^{2}+\frac{1}{2}\right)^{2} kengaytirilishi uchun ishlating.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Ikkala tarafdan \frac{15}{16} ni ayirish.
x^{4}+x^{2}-\frac{11}{16}=0
-\frac{11}{16} olish uchun \frac{1}{4} dan \frac{15}{16} ni ayirish.
t^{2}+t-\frac{11}{16}=0
x^{2} uchun t ni almashtiring.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun 1 ni va c uchun -\frac{11}{16} ni ayiring.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{\sqrt{\sqrt{15}-2}}{2}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.