Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-14+xx=-17x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-14+x^{2}=-17x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-14+x^{2}+17x=0
17x ni ikki tarafga qo’shing.
x^{2}+17x-14=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-17±\sqrt{17^{2}-4\left(-14\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 17 ni b va -14 ni c bilan almashtiring.
x=\frac{-17±\sqrt{289-4\left(-14\right)}}{2}
17 kvadratini chiqarish.
x=\frac{-17±\sqrt{289+56}}{2}
-4 ni -14 marotabaga ko'paytirish.
x=\frac{-17±\sqrt{345}}{2}
289 ni 56 ga qo'shish.
x=\frac{\sqrt{345}-17}{2}
x=\frac{-17±\sqrt{345}}{2} tenglamasini yeching, bunda ± musbat. -17 ni \sqrt{345} ga qo'shish.
x=\frac{-\sqrt{345}-17}{2}
x=\frac{-17±\sqrt{345}}{2} tenglamasini yeching, bunda ± manfiy. -17 dan \sqrt{345} ni ayirish.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
Tenglama yechildi.
-14+xx=-17x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
-14+x^{2}=-17x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-14+x^{2}+17x=0
17x ni ikki tarafga qo’shing.
x^{2}+17x=14
14 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=14+\left(\frac{17}{2}\right)^{2}
17 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{17}{2} olish uchun. Keyin, \frac{17}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+17x+\frac{289}{4}=14+\frac{289}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{17}{2} kvadratini chiqarish.
x^{2}+17x+\frac{289}{4}=\frac{345}{4}
14 ni \frac{289}{4} ga qo'shish.
\left(x+\frac{17}{2}\right)^{2}=\frac{345}{4}
x^{2}+17x+\frac{289}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{345}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{17}{2}=\frac{\sqrt{345}}{2} x+\frac{17}{2}=-\frac{\sqrt{345}}{2}
Qisqartirish.
x=\frac{\sqrt{345}-17}{2} x=\frac{-\sqrt{345}-17}{2}
Tenglamaning ikkala tarafidan \frac{17}{2} ni ayirish.