Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\frac{1}{8}x^{2}+\frac{1}{2}x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{8}\right)\times 4}}{2\left(-\frac{1}{8}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{8} ni a, \frac{1}{2} ni b va 4 ni c bilan almashtiring.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-\frac{1}{8}\right)\times 4}}{2\left(-\frac{1}{8}\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+\frac{1}{2}\times 4}}{2\left(-\frac{1}{8}\right)}
-4 ni -\frac{1}{8} marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+2}}{2\left(-\frac{1}{8}\right)}
\frac{1}{2} ni 4 marotabaga ko'paytirish.
x=\frac{-\frac{1}{2}±\sqrt{\frac{9}{4}}}{2\left(-\frac{1}{8}\right)}
\frac{1}{4} ni 2 ga qo'shish.
x=\frac{-\frac{1}{2}±\frac{3}{2}}{2\left(-\frac{1}{8}\right)}
\frac{9}{4} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{1}{2}±\frac{3}{2}}{-\frac{1}{4}}
2 ni -\frac{1}{8} marotabaga ko'paytirish.
x=\frac{1}{-\frac{1}{4}}
x=\frac{-\frac{1}{2}±\frac{3}{2}}{-\frac{1}{4}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{2} ni \frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-4
1 ni -\frac{1}{4} ga bo'lish 1 ga k'paytirish -\frac{1}{4} ga qaytarish.
x=-\frac{2}{-\frac{1}{4}}
x=\frac{-\frac{1}{2}±\frac{3}{2}}{-\frac{1}{4}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{3}{2} ni -\frac{1}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=8
-2 ni -\frac{1}{4} ga bo'lish -2 ga k'paytirish -\frac{1}{4} ga qaytarish.
x=-4 x=8
Tenglama yechildi.
-\frac{1}{8}x^{2}+\frac{1}{2}x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-\frac{1}{8}x^{2}+\frac{1}{2}x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
-\frac{1}{8}x^{2}+\frac{1}{2}x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{-\frac{1}{8}x^{2}+\frac{1}{2}x}{-\frac{1}{8}}=-\frac{4}{-\frac{1}{8}}
Ikkala tarafini -8 ga ko‘paytiring.
x^{2}+\frac{\frac{1}{2}}{-\frac{1}{8}}x=-\frac{4}{-\frac{1}{8}}
-\frac{1}{8} ga bo'lish -\frac{1}{8} ga ko'paytirishni bekor qiladi.
x^{2}-4x=-\frac{4}{-\frac{1}{8}}
\frac{1}{2} ni -\frac{1}{8} ga bo'lish \frac{1}{2} ga k'paytirish -\frac{1}{8} ga qaytarish.
x^{2}-4x=32
-4 ni -\frac{1}{8} ga bo'lish -4 ga k'paytirish -\frac{1}{8} ga qaytarish.
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=32+4
-2 kvadratini chiqarish.
x^{2}-4x+4=36
32 ni 4 ga qo'shish.
\left(x-2\right)^{2}=36
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=6 x-2=-6
Qisqartirish.
x=8 x=-4
2 ni tenglamaning ikkala tarafiga qo'shish.