x uchun yechish
x = \frac{23}{6} = 3\frac{5}{6} \approx 3,833333333
x=0
Grafik
Viktorina
Polynomial
5xshash muammolar:
- \frac { 1 } { 3 } x + 2 = - x ^ { 2 } + \frac { 7 } { 2 } x + 2
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x\left(-\frac{23}{6}+x\right)=0
x omili.
x=0 x=\frac{23}{6}
Tenglamani yechish uchun x=0 va -\frac{23}{6}+x=0 ni yeching.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x^{2}-\frac{23}{6}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{23}{6}\right)±\sqrt{\left(-\frac{23}{6}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{23}{6} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{23}{6}\right)±\frac{23}{6}}{2}
\left(-\frac{23}{6}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{23}{6}±\frac{23}{6}}{2}
-\frac{23}{6} ning teskarisi \frac{23}{6} ga teng.
x=\frac{\frac{23}{3}}{2}
x=\frac{\frac{23}{6}±\frac{23}{6}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{23}{6} ni \frac{23}{6} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{23}{6}
\frac{23}{3} ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{\frac{23}{6}±\frac{23}{6}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{23}{6} ni \frac{23}{6} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni 2 ga bo'lish.
x=\frac{23}{6} x=0
Tenglama yechildi.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x^{2}-\frac{23}{6}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=\left(-\frac{23}{12}\right)^{2}
-\frac{23}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{23}{12} olish uchun. Keyin, -\frac{23}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{529}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{23}{12} kvadratini chiqarish.
\left(x-\frac{23}{12}\right)^{2}=\frac{529}{144}
x^{2}-\frac{23}{6}x+\frac{529}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{23}{12}=\frac{23}{12} x-\frac{23}{12}=-\frac{23}{12}
Qisqartirish.
x=\frac{23}{6} x=0
\frac{23}{12} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}