Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x\left(-\frac{23}{6}+x\right)=0
x omili.
x=0 x=\frac{23}{6}
Tenglamani yechish uchun x=0 va -\frac{23}{6}+x=0 ni yeching.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x^{2}-\frac{23}{6}x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{23}{6}\right)±\sqrt{\left(-\frac{23}{6}\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{23}{6} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{23}{6}\right)±\frac{23}{6}}{2}
\left(-\frac{23}{6}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{23}{6}±\frac{23}{6}}{2}
-\frac{23}{6} ning teskarisi \frac{23}{6} ga teng.
x=\frac{\frac{23}{3}}{2}
x=\frac{\frac{23}{6}±\frac{23}{6}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{23}{6} ni \frac{23}{6} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{23}{6}
\frac{23}{3} ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{\frac{23}{6}±\frac{23}{6}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{23}{6} ni \frac{23}{6} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni 2 ga bo'lish.
x=\frac{23}{6} x=0
Tenglama yechildi.
-\frac{1}{3}x+2+x^{2}=\frac{7}{2}x+2
x^{2} ni ikki tarafga qo’shing.
-\frac{1}{3}x+2+x^{2}-\frac{7}{2}x=2
Ikkala tarafdan \frac{7}{2}x ni ayirish.
-\frac{23}{6}x+2+x^{2}=2
-\frac{23}{6}x ni olish uchun -\frac{1}{3}x va -\frac{7}{2}x ni birlashtirish.
-\frac{23}{6}x+2+x^{2}-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{23}{6}x+x^{2}=0
0 olish uchun 2 dan 2 ni ayirish.
x^{2}-\frac{23}{6}x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=\left(-\frac{23}{12}\right)^{2}
-\frac{23}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{23}{12} olish uchun. Keyin, -\frac{23}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{529}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{23}{12} kvadratini chiqarish.
\left(x-\frac{23}{12}\right)^{2}=\frac{529}{144}
x^{2}-\frac{23}{6}x+\frac{529}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{23}{12}=\frac{23}{12} x-\frac{23}{12}=-\frac{23}{12}
Qisqartirish.
x=\frac{23}{6} x=0
\frac{23}{12} ni tenglamaning ikkala tarafiga qo'shish.