x uchun yechish
x=-3
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=0
Ikkala tarafdan 2 ni ayirish.
-\frac{1}{2}x^{2}-\frac{3}{2}x=0
0 olish uchun 2 dan 2 ni ayirish.
x\left(-\frac{1}{2}x-\frac{3}{2}\right)=0
x omili.
x=0 x=-3
Tenglamani yechish uchun x=0 va \frac{-x-3}{2}=0 ni yeching.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2=2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=0
O‘zidan 2 ayirilsa 0 qoladi.
-\frac{1}{2}x^{2}-\frac{3}{2}x=0
2 dan 2 ni ayirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, -\frac{3}{2} ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{3}{2}}{2\left(-\frac{1}{2}\right)}
\left(-\frac{3}{2}\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{2}±\frac{3}{2}}{2\left(-\frac{1}{2}\right)}
-\frac{3}{2} ning teskarisi \frac{3}{2} ga teng.
x=\frac{\frac{3}{2}±\frac{3}{2}}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{3}{-1}
x=\frac{\frac{3}{2}±\frac{3}{2}}{-1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{3}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-3
3 ni -1 ga bo'lish.
x=\frac{0}{-1}
x=\frac{\frac{3}{2}±\frac{3}{2}}{-1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{3}{2} ni \frac{3}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=0
0 ni -1 ga bo'lish.
x=-3 x=0
Tenglama yechildi.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=2-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
-\frac{1}{2}x^{2}-\frac{3}{2}x=2-2
O‘zidan 2 ayirilsa 0 qoladi.
-\frac{1}{2}x^{2}-\frac{3}{2}x=0
2 dan 2 ni ayirish.
\frac{-\frac{1}{2}x^{2}-\frac{3}{2}x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{2}}{-\frac{1}{2}}\right)x=\frac{0}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{0}{-\frac{1}{2}}
-\frac{3}{2} ni -\frac{1}{2} ga bo'lish -\frac{3}{2} ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+3x=0
0 ni -\frac{1}{2} ga bo'lish 0 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
\left(x+\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{3}{2} x+\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=0 x=-3
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}