x uchun yechish
x=-4
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\frac{1}{2}x^{2}-x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{1}{2} ni a, -1 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+2\times 4}}{2\left(-\frac{1}{2}\right)}
-4 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-\frac{1}{2}\right)}
2 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
1 ni 8 ga qo'shish.
x=\frac{-\left(-1\right)±3}{2\left(-\frac{1}{2}\right)}
9 ning kvadrat ildizini chiqarish.
x=\frac{1±3}{2\left(-\frac{1}{2}\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±3}{-1}
2 ni -\frac{1}{2} marotabaga ko'paytirish.
x=\frac{4}{-1}
x=\frac{1±3}{-1} tenglamasini yeching, bunda ± musbat. 1 ni 3 ga qo'shish.
x=-4
4 ni -1 ga bo'lish.
x=-\frac{2}{-1}
x=\frac{1±3}{-1} tenglamasini yeching, bunda ± manfiy. 1 dan 3 ni ayirish.
x=2
-2 ni -1 ga bo'lish.
x=-4 x=2
Tenglama yechildi.
-\frac{1}{2}x^{2}-x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-\frac{1}{2}x^{2}-x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
-\frac{1}{2}x^{2}-x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{-\frac{1}{2}x^{2}-x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
x^{2}+\left(-\frac{1}{-\frac{1}{2}}\right)x=-\frac{4}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+2x=-\frac{4}{-\frac{1}{2}}
-1 ni -\frac{1}{2} ga bo'lish -1 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+2x=8
-4 ni -\frac{1}{2} ga bo'lish -4 ga k'paytirish -\frac{1}{2} ga qaytarish.
x^{2}+2x+1^{2}=8+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=8+1
1 kvadratini chiqarish.
x^{2}+2x+1=9
8 ni 1 ga qo'shish.
\left(x+1\right)^{2}=9
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=3 x+1=-3
Qisqartirish.
x=2 x=-4
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}