Baholash
\frac{3}{7}\approx 0,428571429
Omil
\frac{3}{7} = 0,42857142857142855
Baham ko'rish
Klipbordga nusxa olish
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{10}{9} olish uchun \frac{1}{3} va \frac{7}{9}'ni qo'shing.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
2 daraja ko‘rsatkichini \frac{10}{9} ga hisoblang va \frac{100}{81} ni qiymatni oling.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{2} olish uchun 1 dan \frac{1}{2} ni ayirish.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
2 daraja ko‘rsatkichini \frac{1}{2} ga hisoblang va \frac{1}{4} ni qiymatni oling.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
3 daraja ko‘rsatkichini -2 ga hisoblang va -8 ni qiymatni oling.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-2 hosil qilish uchun \frac{1}{4} va -8 ni ko'paytirish.
-\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{7}{2} olish uchun -2 dan \frac{3}{2} ni ayirish.
-\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{100}{81} ni -\frac{7}{2} ga bo'lish \frac{100}{81} ga k'paytirish -\frac{7}{2} ga qaytarish.
-\left(-\frac{200}{567}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} hosil qilish uchun \frac{100}{81} va -\frac{2}{7} ni ko'paytirish.
\frac{200}{567}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
-\frac{200}{567} ning teskarisi \frac{200}{567} ga teng.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
2 daraja ko‘rsatkichini -\frac{1}{6} ga hisoblang va \frac{1}{36} ni qiymatni oling.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{20} olish uchun \frac{1}{4} dan \frac{1}{5} ni ayirish.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{3}{5} olish uchun 1 dan \frac{2}{5} ni ayirish.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
2 daraja ko‘rsatkichini \frac{3}{5} ga hisoblang va \frac{9}{25} ni qiymatni oling.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{20} ni \frac{9}{25} ga bo'lish \frac{1}{20} ga k'paytirish \frac{9}{25} ga qaytarish.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{5}{36}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{5}{36} hosil qilish uchun \frac{1}{20} va \frac{25}{9} ni ko'paytirish.
\frac{200}{567}+\left(\frac{1}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} olish uchun -\frac{1}{36} va \frac{5}{36}'ni qo'shing.
\frac{200}{567}+\frac{1}{81}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
2 daraja ko‘rsatkichini \frac{1}{9} ga hisoblang va \frac{1}{81} ni qiymatni oling.
\frac{23}{63}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{23}{63} olish uchun \frac{200}{567} va \frac{1}{81}'ni qo'shing.
\frac{23}{63}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
\frac{1}{9} olish uchun \frac{1}{3} dan \frac{2}{9} ni ayirish.
\frac{23}{63}-\frac{\frac{1}{9}}{-\frac{7}{4}}
-\frac{7}{4} olish uchun \frac{1}{8} dan \frac{15}{8} ni ayirish.
\frac{23}{63}-\frac{1}{9}\left(-\frac{4}{7}\right)
\frac{1}{9} ni -\frac{7}{4} ga bo'lish \frac{1}{9} ga k'paytirish -\frac{7}{4} ga qaytarish.
\frac{23}{63}-\left(-\frac{4}{63}\right)
-\frac{4}{63} hosil qilish uchun \frac{1}{9} va -\frac{4}{7} ni ko'paytirish.
\frac{23}{63}+\frac{4}{63}
-\frac{4}{63} ning teskarisi \frac{4}{63} ga teng.
\frac{3}{7}
\frac{3}{7} olish uchun \frac{23}{63} va \frac{4}{63}'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}