x uchun yechish
x=3\sqrt{28239}+11\approx 515,133910782
x=11-3\sqrt{28239}\approx -493,133910782
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-35\right)\left(x+13\right)=253575
13 olish uchun 38 dan 25 ni ayirish.
x^{2}-22x-455=253575
x-35 ga x+13 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-22x-455-253575=0
Ikkala tarafdan 253575 ni ayirish.
x^{2}-22x-254030=0
-254030 olish uchun -455 dan 253575 ni ayirish.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\left(-254030\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -22 ni b va -254030 ni c bilan almashtiring.
x=\frac{-\left(-22\right)±\sqrt{484-4\left(-254030\right)}}{2}
-22 kvadratini chiqarish.
x=\frac{-\left(-22\right)±\sqrt{484+1016120}}{2}
-4 ni -254030 marotabaga ko'paytirish.
x=\frac{-\left(-22\right)±\sqrt{1016604}}{2}
484 ni 1016120 ga qo'shish.
x=\frac{-\left(-22\right)±6\sqrt{28239}}{2}
1016604 ning kvadrat ildizini chiqarish.
x=\frac{22±6\sqrt{28239}}{2}
-22 ning teskarisi 22 ga teng.
x=\frac{6\sqrt{28239}+22}{2}
x=\frac{22±6\sqrt{28239}}{2} tenglamasini yeching, bunda ± musbat. 22 ni 6\sqrt{28239} ga qo'shish.
x=3\sqrt{28239}+11
22+6\sqrt{28239} ni 2 ga bo'lish.
x=\frac{22-6\sqrt{28239}}{2}
x=\frac{22±6\sqrt{28239}}{2} tenglamasini yeching, bunda ± manfiy. 22 dan 6\sqrt{28239} ni ayirish.
x=11-3\sqrt{28239}
22-6\sqrt{28239} ni 2 ga bo'lish.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
Tenglama yechildi.
\left(x-35\right)\left(x+13\right)=253575
13 olish uchun 38 dan 25 ni ayirish.
x^{2}-22x-455=253575
x-35 ga x+13 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-22x=253575+455
455 ni ikki tarafga qo’shing.
x^{2}-22x=254030
254030 olish uchun 253575 va 455'ni qo'shing.
x^{2}-22x+\left(-11\right)^{2}=254030+\left(-11\right)^{2}
-22 ni bo‘lish, x shartining koeffitsienti, 2 ga -11 olish uchun. Keyin, -11 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-22x+121=254030+121
-11 kvadratini chiqarish.
x^{2}-22x+121=254151
254030 ni 121 ga qo'shish.
\left(x-11\right)^{2}=254151
x^{2}-22x+121 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-11\right)^{2}}=\sqrt{254151}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-11=3\sqrt{28239} x-11=-3\sqrt{28239}
Qisqartirish.
x=3\sqrt{28239}+11 x=11-3\sqrt{28239}
11 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}