x uchun yechish
x=2\sqrt{5}\approx 4,472135955
x=-2\sqrt{5}\approx -4,472135955
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-4=16
Hisoblang: \left(x-2\right)\left(x+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}=16+4
4 ni ikki tarafga qo’shing.
x^{2}=20
20 olish uchun 16 va 4'ni qo'shing.
x=2\sqrt{5} x=-2\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}-4=16
Hisoblang: \left(x-2\right)\left(x+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}-4-16=0
Ikkala tarafdan 16 ni ayirish.
x^{2}-20=0
-20 olish uchun -4 dan 16 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-20\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -20 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-20\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{80}}{2}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{5}}{2}
80 ning kvadrat ildizini chiqarish.
x=2\sqrt{5}
x=\frac{0±4\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat.
x=-2\sqrt{5}
x=\frac{0±4\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy.
x=2\sqrt{5} x=-2\sqrt{5}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}