Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4=16
Hisoblang: \left(x-2\right)\left(x+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}=16+4
4 ni ikki tarafga qo’shing.
x^{2}=20
20 olish uchun 16 va 4'ni qo'shing.
x=2\sqrt{5} x=-2\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}-4=16
Hisoblang: \left(x-2\right)\left(x+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}-4-16=0
Ikkala tarafdan 16 ni ayirish.
x^{2}-20=0
-20 olish uchun -4 dan 16 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-20\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -20 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-20\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{80}}{2}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{5}}{2}
80 ning kvadrat ildizini chiqarish.
x=2\sqrt{5}
x=\frac{0±4\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat.
x=-2\sqrt{5}
x=\frac{0±4\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy.
x=2\sqrt{5} x=-2\sqrt{5}
Tenglama yechildi.