Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-11x+10=1
x-2 ga 3x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-11x+10-1=0
Ikkala tarafdan 1 ni ayirish.
3x^{2}-11x+9=0
9 olish uchun 10 dan 1 ni ayirish.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\times 9}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -11 ni b va 9 ni c bilan almashtiring.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\times 9}}{2\times 3}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-12\times 9}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{121-108}}{2\times 3}
-12 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{13}}{2\times 3}
121 ni -108 ga qo'shish.
x=\frac{11±\sqrt{13}}{2\times 3}
-11 ning teskarisi 11 ga teng.
x=\frac{11±\sqrt{13}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{13}+11}{6}
x=\frac{11±\sqrt{13}}{6} tenglamasini yeching, bunda ± musbat. 11 ni \sqrt{13} ga qo'shish.
x=\frac{11-\sqrt{13}}{6}
x=\frac{11±\sqrt{13}}{6} tenglamasini yeching, bunda ± manfiy. 11 dan \sqrt{13} ni ayirish.
x=\frac{\sqrt{13}+11}{6} x=\frac{11-\sqrt{13}}{6}
Tenglama yechildi.
3x^{2}-11x+10=1
x-2 ga 3x-5 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-11x=1-10
Ikkala tarafdan 10 ni ayirish.
3x^{2}-11x=-9
-9 olish uchun 1 dan 10 ni ayirish.
\frac{3x^{2}-11x}{3}=-\frac{9}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{11}{3}x=-\frac{9}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{3}x=-3
-9 ni 3 ga bo'lish.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=-3+\left(-\frac{11}{6}\right)^{2}
-\frac{11}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{6} olish uchun. Keyin, -\frac{11}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{3}x+\frac{121}{36}=-3+\frac{121}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{6} kvadratini chiqarish.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{13}{36}
-3 ni \frac{121}{36} ga qo'shish.
\left(x-\frac{11}{6}\right)^{2}=\frac{13}{36}
x^{2}-\frac{11}{3}x+\frac{121}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{13}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{6}=\frac{\sqrt{13}}{6} x-\frac{11}{6}=-\frac{\sqrt{13}}{6}
Qisqartirish.
x=\frac{\sqrt{13}+11}{6} x=\frac{11-\sqrt{13}}{6}
\frac{11}{6} ni tenglamaning ikkala tarafiga qo'shish.