Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-x=36
x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x-36=0
Ikkala tarafdan 36 ni ayirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-36\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va -36 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+144}}{2}
-4 ni -36 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{145}}{2}
1 ni 144 ga qo'shish.
x=\frac{1±\sqrt{145}}{2}
-1 ning teskarisi 1 ga teng.
x=\frac{\sqrt{145}+1}{2}
x=\frac{1±\sqrt{145}}{2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{145} ga qo'shish.
x=\frac{1-\sqrt{145}}{2}
x=\frac{1±\sqrt{145}}{2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{145} ni ayirish.
x=\frac{\sqrt{145}+1}{2} x=\frac{1-\sqrt{145}}{2}
Tenglama yechildi.
x^{2}-x=36
x-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=36+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=36+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{145}{4}
36 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{145}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{145}}{2} x-\frac{1}{2}=-\frac{\sqrt{145}}{2}
Qisqartirish.
x=\frac{\sqrt{145}+1}{2} x=\frac{1-\sqrt{145}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.