x uchun yechish
x=\frac{\sqrt{322}}{46}\approx 0,390094749
x=-\frac{\sqrt{322}}{46}\approx -0,390094749
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-1=5\left(1-3x\right)\left(1+3x\right)+1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
x^{2}-1=\left(5-15x\right)\left(1+3x\right)+1
5 ga 1-3x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1=5-45x^{2}+1
5-15x ga 1+3x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-1=6-45x^{2}
6 olish uchun 5 va 1'ni qo'shing.
x^{2}-1+45x^{2}=6
45x^{2} ni ikki tarafga qo’shing.
46x^{2}-1=6
46x^{2} ni olish uchun x^{2} va 45x^{2} ni birlashtirish.
46x^{2}=6+1
1 ni ikki tarafga qo’shing.
46x^{2}=7
7 olish uchun 6 va 1'ni qo'shing.
x^{2}=\frac{7}{46}
Ikki tarafini 46 ga bo‘ling.
x=\frac{\sqrt{322}}{46} x=-\frac{\sqrt{322}}{46}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}-1=5\left(1-3x\right)\left(1+3x\right)+1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
x^{2}-1=\left(5-15x\right)\left(1+3x\right)+1
5 ga 1-3x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1=5-45x^{2}+1
5-15x ga 1+3x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-1=6-45x^{2}
6 olish uchun 5 va 1'ni qo'shing.
x^{2}-1-6=-45x^{2}
Ikkala tarafdan 6 ni ayirish.
x^{2}-7=-45x^{2}
-7 olish uchun -1 dan 6 ni ayirish.
x^{2}-7+45x^{2}=0
45x^{2} ni ikki tarafga qo’shing.
46x^{2}-7=0
46x^{2} ni olish uchun x^{2} va 45x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\times 46\left(-7\right)}}{2\times 46}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 46 ni a, 0 ni b va -7 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 46\left(-7\right)}}{2\times 46}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-184\left(-7\right)}}{2\times 46}
-4 ni 46 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1288}}{2\times 46}
-184 ni -7 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{322}}{2\times 46}
1288 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{322}}{92}
2 ni 46 marotabaga ko'paytirish.
x=\frac{\sqrt{322}}{46}
x=\frac{0±2\sqrt{322}}{92} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{322}}{46}
x=\frac{0±2\sqrt{322}}{92} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{322}}{46} x=-\frac{\sqrt{322}}{46}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}