x uchun yechish
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50}\approx 19,909297203
x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}\approx -20,029297203
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(125x^{2}+15x-50\times 40\right)\times 30+x\left(125x+15\right)\times 100=6420000
x ga 125x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(125x^{2}+15x-2000\right)\times 30+x\left(125x+15\right)\times 100=6420000
2000 hosil qilish uchun 50 va 40 ni ko'paytirish.
3750x^{2}+450x-60000+x\left(125x+15\right)\times 100=6420000
125x^{2}+15x-2000 ga 30 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3750x^{2}+450x-60000+\left(125x^{2}+15x\right)\times 100=6420000
x ga 125x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3750x^{2}+450x-60000+12500x^{2}+1500x=6420000
125x^{2}+15x ga 100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16250x^{2}+450x-60000+1500x=6420000
16250x^{2} ni olish uchun 3750x^{2} va 12500x^{2} ni birlashtirish.
16250x^{2}+1950x-60000=6420000
1950x ni olish uchun 450x va 1500x ni birlashtirish.
16250x^{2}+1950x-60000-6420000=0
Ikkala tarafdan 6420000 ni ayirish.
16250x^{2}+1950x-6480000=0
-6480000 olish uchun -60000 dan 6420000 ni ayirish.
x=\frac{-1950±\sqrt{1950^{2}-4\times 16250\left(-6480000\right)}}{2\times 16250}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16250 ni a, 1950 ni b va -6480000 ni c bilan almashtiring.
x=\frac{-1950±\sqrt{3802500-4\times 16250\left(-6480000\right)}}{2\times 16250}
1950 kvadratini chiqarish.
x=\frac{-1950±\sqrt{3802500-65000\left(-6480000\right)}}{2\times 16250}
-4 ni 16250 marotabaga ko'paytirish.
x=\frac{-1950±\sqrt{3802500+421200000000}}{2\times 16250}
-65000 ni -6480000 marotabaga ko'paytirish.
x=\frac{-1950±\sqrt{421203802500}}{2\times 16250}
3802500 ni 421200000000 ga qo'shish.
x=\frac{-1950±150\sqrt{18720169}}{2\times 16250}
421203802500 ning kvadrat ildizini chiqarish.
x=\frac{-1950±150\sqrt{18720169}}{32500}
2 ni 16250 marotabaga ko'paytirish.
x=\frac{150\sqrt{18720169}-1950}{32500}
x=\frac{-1950±150\sqrt{18720169}}{32500} tenglamasini yeching, bunda ± musbat. -1950 ni 150\sqrt{18720169} ga qo'shish.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
-1950+150\sqrt{18720169} ni 32500 ga bo'lish.
x=\frac{-150\sqrt{18720169}-1950}{32500}
x=\frac{-1950±150\sqrt{18720169}}{32500} tenglamasini yeching, bunda ± manfiy. -1950 dan 150\sqrt{18720169} ni ayirish.
x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
-1950-150\sqrt{18720169} ni 32500 ga bo'lish.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50} x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Tenglama yechildi.
\left(125x^{2}+15x-50\times 40\right)\times 30+x\left(125x+15\right)\times 100=6420000
x ga 125x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(125x^{2}+15x-2000\right)\times 30+x\left(125x+15\right)\times 100=6420000
2000 hosil qilish uchun 50 va 40 ni ko'paytirish.
3750x^{2}+450x-60000+x\left(125x+15\right)\times 100=6420000
125x^{2}+15x-2000 ga 30 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3750x^{2}+450x-60000+\left(125x^{2}+15x\right)\times 100=6420000
x ga 125x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3750x^{2}+450x-60000+12500x^{2}+1500x=6420000
125x^{2}+15x ga 100 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16250x^{2}+450x-60000+1500x=6420000
16250x^{2} ni olish uchun 3750x^{2} va 12500x^{2} ni birlashtirish.
16250x^{2}+1950x-60000=6420000
1950x ni olish uchun 450x va 1500x ni birlashtirish.
16250x^{2}+1950x=6420000+60000
60000 ni ikki tarafga qo’shing.
16250x^{2}+1950x=6480000
6480000 olish uchun 6420000 va 60000'ni qo'shing.
\frac{16250x^{2}+1950x}{16250}=\frac{6480000}{16250}
Ikki tarafini 16250 ga bo‘ling.
x^{2}+\frac{1950}{16250}x=\frac{6480000}{16250}
16250 ga bo'lish 16250 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{25}x=\frac{6480000}{16250}
\frac{1950}{16250} ulushini 650 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{25}x=\frac{5184}{13}
\frac{6480000}{16250} ulushini 1250 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{25}x+\left(\frac{3}{50}\right)^{2}=\frac{5184}{13}+\left(\frac{3}{50}\right)^{2}
\frac{3}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{50} olish uchun. Keyin, \frac{3}{50} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{25}x+\frac{9}{2500}=\frac{5184}{13}+\frac{9}{2500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{50} kvadratini chiqarish.
x^{2}+\frac{3}{25}x+\frac{9}{2500}=\frac{12960117}{32500}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5184}{13} ni \frac{9}{2500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{50}\right)^{2}=\frac{12960117}{32500}
x^{2}+\frac{3}{25}x+\frac{9}{2500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{50}\right)^{2}}=\sqrt{\frac{12960117}{32500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{50}=\frac{3\sqrt{18720169}}{650} x+\frac{3}{50}=-\frac{3\sqrt{18720169}}{650}
Qisqartirish.
x=\frac{3\sqrt{18720169}}{650}-\frac{3}{50} x=-\frac{3\sqrt{18720169}}{650}-\frac{3}{50}
Tenglamaning ikkala tarafidan \frac{3}{50} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}