Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(1800-600x\right)x=50
90-30x ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1800x-600x^{2}=50
1800-600x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1800x-600x^{2}-50=0
Ikkala tarafdan 50 ni ayirish.
-600x^{2}+1800x-50=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -600 ni a, 1800 ni b va -50 ni c bilan almashtiring.
x=\frac{-1800±\sqrt{3240000-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
1800 kvadratini chiqarish.
x=\frac{-1800±\sqrt{3240000+2400\left(-50\right)}}{2\left(-600\right)}
-4 ni -600 marotabaga ko'paytirish.
x=\frac{-1800±\sqrt{3240000-120000}}{2\left(-600\right)}
2400 ni -50 marotabaga ko'paytirish.
x=\frac{-1800±\sqrt{3120000}}{2\left(-600\right)}
3240000 ni -120000 ga qo'shish.
x=\frac{-1800±200\sqrt{78}}{2\left(-600\right)}
3120000 ning kvadrat ildizini chiqarish.
x=\frac{-1800±200\sqrt{78}}{-1200}
2 ni -600 marotabaga ko'paytirish.
x=\frac{200\sqrt{78}-1800}{-1200}
x=\frac{-1800±200\sqrt{78}}{-1200} tenglamasini yeching, bunda ± musbat. -1800 ni 200\sqrt{78} ga qo'shish.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
-1800+200\sqrt{78} ni -1200 ga bo'lish.
x=\frac{-200\sqrt{78}-1800}{-1200}
x=\frac{-1800±200\sqrt{78}}{-1200} tenglamasini yeching, bunda ± manfiy. -1800 dan 200\sqrt{78} ni ayirish.
x=\frac{\sqrt{78}}{6}+\frac{3}{2}
-1800-200\sqrt{78} ni -1200 ga bo'lish.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2} x=\frac{\sqrt{78}}{6}+\frac{3}{2}
Tenglama yechildi.
\left(1800-600x\right)x=50
90-30x ga 20 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1800x-600x^{2}=50
1800-600x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-600x^{2}+1800x=50
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-600x^{2}+1800x}{-600}=\frac{50}{-600}
Ikki tarafini -600 ga bo‘ling.
x^{2}+\frac{1800}{-600}x=\frac{50}{-600}
-600 ga bo'lish -600 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{50}{-600}
1800 ni -600 ga bo'lish.
x^{2}-3x=-\frac{1}{12}
\frac{50}{-600} ulushini 50 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{12}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-\frac{1}{12}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{13}{6}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{12} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{6}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{6}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{78}}{6} x-\frac{3}{2}=-\frac{\sqrt{78}}{6}
Qisqartirish.
x=\frac{\sqrt{78}}{6}+\frac{3}{2} x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.