x uchun yechish
x=4
x=10
Grafik
Baham ko'rish
Klipbordga nusxa olish
760+112x-8x^{2}=1080
76-4x ga 10+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
760+112x-8x^{2}-1080=0
Ikkala tarafdan 1080 ni ayirish.
-320+112x-8x^{2}=0
-320 olish uchun 760 dan 1080 ni ayirish.
-8x^{2}+112x-320=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-112±\sqrt{112^{2}-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -8 ni a, 112 ni b va -320 ni c bilan almashtiring.
x=\frac{-112±\sqrt{12544-4\left(-8\right)\left(-320\right)}}{2\left(-8\right)}
112 kvadratini chiqarish.
x=\frac{-112±\sqrt{12544+32\left(-320\right)}}{2\left(-8\right)}
-4 ni -8 marotabaga ko'paytirish.
x=\frac{-112±\sqrt{12544-10240}}{2\left(-8\right)}
32 ni -320 marotabaga ko'paytirish.
x=\frac{-112±\sqrt{2304}}{2\left(-8\right)}
12544 ni -10240 ga qo'shish.
x=\frac{-112±48}{2\left(-8\right)}
2304 ning kvadrat ildizini chiqarish.
x=\frac{-112±48}{-16}
2 ni -8 marotabaga ko'paytirish.
x=-\frac{64}{-16}
x=\frac{-112±48}{-16} tenglamasini yeching, bunda ± musbat. -112 ni 48 ga qo'shish.
x=4
-64 ni -16 ga bo'lish.
x=-\frac{160}{-16}
x=\frac{-112±48}{-16} tenglamasini yeching, bunda ± manfiy. -112 dan 48 ni ayirish.
x=10
-160 ni -16 ga bo'lish.
x=4 x=10
Tenglama yechildi.
760+112x-8x^{2}=1080
76-4x ga 10+2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
112x-8x^{2}=1080-760
Ikkala tarafdan 760 ni ayirish.
112x-8x^{2}=320
320 olish uchun 1080 dan 760 ni ayirish.
-8x^{2}+112x=320
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-8x^{2}+112x}{-8}=\frac{320}{-8}
Ikki tarafini -8 ga bo‘ling.
x^{2}+\frac{112}{-8}x=\frac{320}{-8}
-8 ga bo'lish -8 ga ko'paytirishni bekor qiladi.
x^{2}-14x=\frac{320}{-8}
112 ni -8 ga bo'lish.
x^{2}-14x=-40
320 ni -8 ga bo'lish.
x^{2}-14x+\left(-7\right)^{2}=-40+\left(-7\right)^{2}
-14 ni bo‘lish, x shartining koeffitsienti, 2 ga -7 olish uchun. Keyin, -7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-14x+49=-40+49
-7 kvadratini chiqarish.
x^{2}-14x+49=9
-40 ni 49 ga qo'shish.
\left(x-7\right)^{2}=9
x^{2}-14x+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-7\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-7=3 x-7=-3
Qisqartirish.
x=10 x=4
7 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}