x uchun yechish
x=54
x=6
Grafik
Baham ko'rish
Klipbordga nusxa olish
3456-240x+4x^{2}=2160
72-2x ga 48-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3456-240x+4x^{2}-2160=0
Ikkala tarafdan 2160 ni ayirish.
1296-240x+4x^{2}=0
1296 olish uchun 3456 dan 2160 ni ayirish.
4x^{2}-240x+1296=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-240\right)±\sqrt{\left(-240\right)^{2}-4\times 4\times 1296}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -240 ni b va 1296 ni c bilan almashtiring.
x=\frac{-\left(-240\right)±\sqrt{57600-4\times 4\times 1296}}{2\times 4}
-240 kvadratini chiqarish.
x=\frac{-\left(-240\right)±\sqrt{57600-16\times 1296}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-240\right)±\sqrt{57600-20736}}{2\times 4}
-16 ni 1296 marotabaga ko'paytirish.
x=\frac{-\left(-240\right)±\sqrt{36864}}{2\times 4}
57600 ni -20736 ga qo'shish.
x=\frac{-\left(-240\right)±192}{2\times 4}
36864 ning kvadrat ildizini chiqarish.
x=\frac{240±192}{2\times 4}
-240 ning teskarisi 240 ga teng.
x=\frac{240±192}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{432}{8}
x=\frac{240±192}{8} tenglamasini yeching, bunda ± musbat. 240 ni 192 ga qo'shish.
x=54
432 ni 8 ga bo'lish.
x=\frac{48}{8}
x=\frac{240±192}{8} tenglamasini yeching, bunda ± manfiy. 240 dan 192 ni ayirish.
x=6
48 ni 8 ga bo'lish.
x=54 x=6
Tenglama yechildi.
3456-240x+4x^{2}=2160
72-2x ga 48-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-240x+4x^{2}=2160-3456
Ikkala tarafdan 3456 ni ayirish.
-240x+4x^{2}=-1296
-1296 olish uchun 2160 dan 3456 ni ayirish.
4x^{2}-240x=-1296
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4x^{2}-240x}{4}=-\frac{1296}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{240}{4}\right)x=-\frac{1296}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-60x=-\frac{1296}{4}
-240 ni 4 ga bo'lish.
x^{2}-60x=-324
-1296 ni 4 ga bo'lish.
x^{2}-60x+\left(-30\right)^{2}=-324+\left(-30\right)^{2}
-60 ni bo‘lish, x shartining koeffitsienti, 2 ga -30 olish uchun. Keyin, -30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-60x+900=-324+900
-30 kvadratini chiqarish.
x^{2}-60x+900=576
-324 ni 900 ga qo'shish.
\left(x-30\right)^{2}=576
x^{2}-60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-30\right)^{2}}=\sqrt{576}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-30=24 x-30=-24
Qisqartirish.
x=54 x=6
30 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}