Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

11x-14-2x^{2}=112
7-2x ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11x-14-2x^{2}-112=0
Ikkala tarafdan 112 ni ayirish.
11x-126-2x^{2}=0
-126 olish uchun -14 dan 112 ni ayirish.
-2x^{2}+11x-126=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-11±\sqrt{11^{2}-4\left(-2\right)\left(-126\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 11 ni b va -126 ni c bilan almashtiring.
x=\frac{-11±\sqrt{121-4\left(-2\right)\left(-126\right)}}{2\left(-2\right)}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121+8\left(-126\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121-1008}}{2\left(-2\right)}
8 ni -126 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{-887}}{2\left(-2\right)}
121 ni -1008 ga qo'shish.
x=\frac{-11±\sqrt{887}i}{2\left(-2\right)}
-887 ning kvadrat ildizini chiqarish.
x=\frac{-11±\sqrt{887}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-11+\sqrt{887}i}{-4}
x=\frac{-11±\sqrt{887}i}{-4} tenglamasini yeching, bunda ± musbat. -11 ni i\sqrt{887} ga qo'shish.
x=\frac{-\sqrt{887}i+11}{4}
-11+i\sqrt{887} ni -4 ga bo'lish.
x=\frac{-\sqrt{887}i-11}{-4}
x=\frac{-11±\sqrt{887}i}{-4} tenglamasini yeching, bunda ± manfiy. -11 dan i\sqrt{887} ni ayirish.
x=\frac{11+\sqrt{887}i}{4}
-11-i\sqrt{887} ni -4 ga bo'lish.
x=\frac{-\sqrt{887}i+11}{4} x=\frac{11+\sqrt{887}i}{4}
Tenglama yechildi.
11x-14-2x^{2}=112
7-2x ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11x-2x^{2}=112+14
14 ni ikki tarafga qo’shing.
11x-2x^{2}=126
126 olish uchun 112 va 14'ni qo'shing.
-2x^{2}+11x=126
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+11x}{-2}=\frac{126}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{11}{-2}x=\frac{126}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=\frac{126}{-2}
11 ni -2 ga bo'lish.
x^{2}-\frac{11}{2}x=-63
126 ni -2 ga bo'lish.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-63+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-63+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{887}{16}
-63 ni \frac{121}{16} ga qo'shish.
\left(x-\frac{11}{4}\right)^{2}=-\frac{887}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{-\frac{887}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{\sqrt{887}i}{4} x-\frac{11}{4}=-\frac{\sqrt{887}i}{4}
Qisqartirish.
x=\frac{11+\sqrt{887}i}{4} x=\frac{-\sqrt{887}i+11}{4}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.