x uchun yechish
x=5\sqrt{65}-35\approx 5,311288741
x=-5\sqrt{65}-35\approx -75,311288741
Grafik
Baham ko'rish
Klipbordga nusxa olish
6000+700x+10x^{2}=10000
600+10x ga 10+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
6000+700x+10x^{2}-10000=0
Ikkala tarafdan 10000 ni ayirish.
-4000+700x+10x^{2}=0
-4000 olish uchun 6000 dan 10000 ni ayirish.
10x^{2}+700x-4000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-700±\sqrt{700^{2}-4\times 10\left(-4000\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, 700 ni b va -4000 ni c bilan almashtiring.
x=\frac{-700±\sqrt{490000-4\times 10\left(-4000\right)}}{2\times 10}
700 kvadratini chiqarish.
x=\frac{-700±\sqrt{490000-40\left(-4000\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-700±\sqrt{490000+160000}}{2\times 10}
-40 ni -4000 marotabaga ko'paytirish.
x=\frac{-700±\sqrt{650000}}{2\times 10}
490000 ni 160000 ga qo'shish.
x=\frac{-700±100\sqrt{65}}{2\times 10}
650000 ning kvadrat ildizini chiqarish.
x=\frac{-700±100\sqrt{65}}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{100\sqrt{65}-700}{20}
x=\frac{-700±100\sqrt{65}}{20} tenglamasini yeching, bunda ± musbat. -700 ni 100\sqrt{65} ga qo'shish.
x=5\sqrt{65}-35
-700+100\sqrt{65} ni 20 ga bo'lish.
x=\frac{-100\sqrt{65}-700}{20}
x=\frac{-700±100\sqrt{65}}{20} tenglamasini yeching, bunda ± manfiy. -700 dan 100\sqrt{65} ni ayirish.
x=-5\sqrt{65}-35
-700-100\sqrt{65} ni 20 ga bo'lish.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
Tenglama yechildi.
6000+700x+10x^{2}=10000
600+10x ga 10+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
700x+10x^{2}=10000-6000
Ikkala tarafdan 6000 ni ayirish.
700x+10x^{2}=4000
4000 olish uchun 10000 dan 6000 ni ayirish.
10x^{2}+700x=4000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{10x^{2}+700x}{10}=\frac{4000}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\frac{700}{10}x=\frac{4000}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}+70x=\frac{4000}{10}
700 ni 10 ga bo'lish.
x^{2}+70x=400
4000 ni 10 ga bo'lish.
x^{2}+70x+35^{2}=400+35^{2}
70 ni bo‘lish, x shartining koeffitsienti, 2 ga 35 olish uchun. Keyin, 35 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+70x+1225=400+1225
35 kvadratini chiqarish.
x^{2}+70x+1225=1625
400 ni 1225 ga qo'shish.
\left(x+35\right)^{2}=1625
x^{2}+70x+1225 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+35\right)^{2}}=\sqrt{1625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+35=5\sqrt{65} x+35=-5\sqrt{65}
Qisqartirish.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
Tenglamaning ikkala tarafidan 35 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}