x uchun yechish (complex solution)
x=\frac{-\sqrt{47}i+7}{2}\approx 3,5-3,4278273i
x=\frac{7+\sqrt{47}i}{2}\approx 3,5+3,4278273i
Grafik
Baham ko'rish
Klipbordga nusxa olish
6-x^{2}+7x=30
x^{2} hosil qilish uchun x va x ni ko'paytirish.
6-x^{2}+7x-30=0
Ikkala tarafdan 30 ni ayirish.
-24-x^{2}+7x=0
-24 olish uchun 6 dan 30 ni ayirish.
-x^{2}+7x-24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 7 ni b va -24 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-24\right)}}{2\left(-1\right)}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49+4\left(-24\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49-96}}{2\left(-1\right)}
4 ni -24 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{-47}}{2\left(-1\right)}
49 ni -96 ga qo'shish.
x=\frac{-7±\sqrt{47}i}{2\left(-1\right)}
-47 ning kvadrat ildizini chiqarish.
x=\frac{-7±\sqrt{47}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-7+\sqrt{47}i}{-2}
x=\frac{-7±\sqrt{47}i}{-2} tenglamasini yeching, bunda ± musbat. -7 ni i\sqrt{47} ga qo'shish.
x=\frac{-\sqrt{47}i+7}{2}
-7+i\sqrt{47} ni -2 ga bo'lish.
x=\frac{-\sqrt{47}i-7}{-2}
x=\frac{-7±\sqrt{47}i}{-2} tenglamasini yeching, bunda ± manfiy. -7 dan i\sqrt{47} ni ayirish.
x=\frac{7+\sqrt{47}i}{2}
-7-i\sqrt{47} ni -2 ga bo'lish.
x=\frac{-\sqrt{47}i+7}{2} x=\frac{7+\sqrt{47}i}{2}
Tenglama yechildi.
6-x^{2}+7x=30
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-x^{2}+7x=30-6
Ikkala tarafdan 6 ni ayirish.
-x^{2}+7x=24
24 olish uchun 30 dan 6 ni ayirish.
\frac{-x^{2}+7x}{-1}=\frac{24}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{7}{-1}x=\frac{24}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-7x=\frac{24}{-1}
7 ni -1 ga bo'lish.
x^{2}-7x=-24
24 ni -1 ga bo'lish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-24+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-24+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=-\frac{47}{4}
-24 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=-\frac{47}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{-\frac{47}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{\sqrt{47}i}{2} x-\frac{7}{2}=-\frac{\sqrt{47}i}{2}
Qisqartirish.
x=\frac{7+\sqrt{47}i}{2} x=\frac{-\sqrt{47}i+7}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}