Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(5x\right)^{2}-1=-1-5x
Hisoblang: \left(5x-1\right)\left(5x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
5^{2}x^{2}-1=-1-5x
\left(5x\right)^{2} ni kengaytirish.
25x^{2}-1=-1-5x
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
25x^{2}-1-\left(-1\right)=-5x
Ikkala tarafdan -1 ni ayirish.
25x^{2}-1+1=-5x
-1 ning teskarisi 1 ga teng.
25x^{2}-1+1+5x=0
5x ni ikki tarafga qo’shing.
25x^{2}+5x=0
0 olish uchun -1 va 1'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, 5 ni b va 0 ni c bilan almashtiring.
x=\frac{-5±5}{2\times 25}
5^{2} ning kvadrat ildizini chiqarish.
x=\frac{-5±5}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{0}{50}
x=\frac{-5±5}{50} tenglamasini yeching, bunda ± musbat. -5 ni 5 ga qo'shish.
x=0
0 ni 50 ga bo'lish.
x=-\frac{10}{50}
x=\frac{-5±5}{50} tenglamasini yeching, bunda ± manfiy. -5 dan 5 ni ayirish.
x=-\frac{1}{5}
\frac{-10}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{5}
Tenglama yechildi.
\left(5x\right)^{2}-1=-1-5x
Hisoblang: \left(5x-1\right)\left(5x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
5^{2}x^{2}-1=-1-5x
\left(5x\right)^{2} ni kengaytirish.
25x^{2}-1=-1-5x
2 daraja ko‘rsatkichini 5 ga hisoblang va 25 ni qiymatni oling.
25x^{2}-1+5x=-1
5x ni ikki tarafga qo’shing.
25x^{2}+5x=-1+1
1 ni ikki tarafga qo’shing.
25x^{2}+5x=0
0 olish uchun -1 va 1'ni qo'shing.
\frac{25x^{2}+5x}{25}=\frac{0}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\frac{5}{25}x=\frac{0}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{5}x=\frac{0}{25}
\frac{5}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{5}x=0
0 ni 25 ga bo'lish.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\left(\frac{1}{10}\right)^{2}
\frac{1}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{10} olish uchun. Keyin, \frac{1}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{10} kvadratini chiqarish.
\left(x+\frac{1}{10}\right)^{2}=\frac{1}{100}
x^{2}+\frac{1}{5}x+\frac{1}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{10}=\frac{1}{10} x+\frac{1}{10}=-\frac{1}{10}
Qisqartirish.
x=0 x=-\frac{1}{5}
Tenglamaning ikkala tarafidan \frac{1}{10} ni ayirish.