x uchun yechish
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
5\left(50-\frac{x-100}{5}\right)x-5500>0
Tenglamaning ikkala tarafini 5 ga ko'paytirish. 5 musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
\left(250+5\left(-\frac{x-100}{5}\right)\right)x-5500>0
5 ga 50-\frac{x-100}{5} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(250+\frac{-5\left(x-100\right)}{5}\right)x-5500>0
5\left(-\frac{x-100}{5}\right) ni yagona kasrga aylantiring.
\left(250-\left(x-100\right)\right)x-5500>0
5 va 5 ni qisqartiring.
\left(250-x-\left(-100\right)\right)x-5500>0
x-100 teskarisini topish uchun har birining teskarisini toping.
\left(250-x+100\right)x-5500>0
-100 ning teskarisi 100 ga teng.
\left(350-x\right)x-5500>0
350 olish uchun 250 va 100'ni qo'shing.
350x-x^{2}-5500>0
350-x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-350x+x^{2}+5500<0
350x-x^{2}-5500 musbatida eng katta quvvatni koeffitsientini aniqlash uchun tengsizlikni -1 ga koʻpaytiring. -1 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
-350x+x^{2}+5500=0
Tengsizlikni yechish uchun chap tomon faktorini hisoblang. Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 1\times 5500}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -350 ni va c uchun 5500 ni ayiring.
x=\frac{350±10\sqrt{1005}}{2}
Hisoblarni amalga oshiring.
x=5\sqrt{1005}+175 x=175-5\sqrt{1005}
x=\frac{350±10\sqrt{1005}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
\left(x-\left(5\sqrt{1005}+175\right)\right)\left(x-\left(175-5\sqrt{1005}\right)\right)<0
Yechimlardan foydalanib tengsizlikni qaytadan yozing.
x-\left(5\sqrt{1005}+175\right)>0 x-\left(175-5\sqrt{1005}\right)<0
Koʻpaytma manfiy boʻlishi uchun x-\left(5\sqrt{1005}+175\right) va x-\left(175-5\sqrt{1005}\right) qarama-qarshi belgilar boʻlishi kerak. x-\left(5\sqrt{1005}+175\right) musbat, x-\left(175-5\sqrt{1005}\right) manfiy boʻlganda, yechimni toping.
x\in \emptyset
Bu har qanday x uchun xato.
x-\left(175-5\sqrt{1005}\right)>0 x-\left(5\sqrt{1005}+175\right)<0
x-\left(175-5\sqrt{1005}\right) musbat, x-\left(5\sqrt{1005}+175\right) manfiy boʻlganda, yechimni toping.
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
Ikkala tengsizlikning mos yechimi – x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right).
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
Oxirgi yechim olingan yechimlarning birlashmasidir.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}