x uchun yechish
x=98
x=2
Grafik
Baham ko'rish
Klipbordga nusxa olish
2496-100x+x^{2}=2300
48-x ga 52-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2496-100x+x^{2}-2300=0
Ikkala tarafdan 2300 ni ayirish.
196-100x+x^{2}=0
196 olish uchun 2496 dan 2300 ni ayirish.
x^{2}-100x+196=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 196}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -100 ni b va 196 ni c bilan almashtiring.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 196}}{2}
-100 kvadratini chiqarish.
x=\frac{-\left(-100\right)±\sqrt{10000-784}}{2}
-4 ni 196 marotabaga ko'paytirish.
x=\frac{-\left(-100\right)±\sqrt{9216}}{2}
10000 ni -784 ga qo'shish.
x=\frac{-\left(-100\right)±96}{2}
9216 ning kvadrat ildizini chiqarish.
x=\frac{100±96}{2}
-100 ning teskarisi 100 ga teng.
x=\frac{196}{2}
x=\frac{100±96}{2} tenglamasini yeching, bunda ± musbat. 100 ni 96 ga qo'shish.
x=98
196 ni 2 ga bo'lish.
x=\frac{4}{2}
x=\frac{100±96}{2} tenglamasini yeching, bunda ± manfiy. 100 dan 96 ni ayirish.
x=2
4 ni 2 ga bo'lish.
x=98 x=2
Tenglama yechildi.
2496-100x+x^{2}=2300
48-x ga 52-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-100x+x^{2}=2300-2496
Ikkala tarafdan 2496 ni ayirish.
-100x+x^{2}=-196
-196 olish uchun 2300 dan 2496 ni ayirish.
x^{2}-100x=-196
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-100x+\left(-50\right)^{2}=-196+\left(-50\right)^{2}
-100 ni bo‘lish, x shartining koeffitsienti, 2 ga -50 olish uchun. Keyin, -50 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-100x+2500=-196+2500
-50 kvadratini chiqarish.
x^{2}-100x+2500=2304
-196 ni 2500 ga qo'shish.
\left(x-50\right)^{2}=2304
x^{2}-100x+2500 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2304}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-50=48 x-50=-48
Qisqartirish.
x=98 x=2
50 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}