x uchun yechish
x=1
x=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(4-x\right)^{2}=9
\left(4-x\right)^{2} hosil qilish uchun 4-x va 4-x ni ko'paytirish.
16-8x+x^{2}=9
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-x\right)^{2} kengaytirilishi uchun ishlating.
16-8x+x^{2}-9=0
Ikkala tarafdan 9 ni ayirish.
7-8x+x^{2}=0
7 olish uchun 16 dan 9 ni ayirish.
x^{2}-8x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 7}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{36}}{2}
64 ni -28 ga qo'shish.
x=\frac{-\left(-8\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
x=\frac{8±6}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{14}{2}
x=\frac{8±6}{2} tenglamasini yeching, bunda ± musbat. 8 ni 6 ga qo'shish.
x=7
14 ni 2 ga bo'lish.
x=\frac{2}{2}
x=\frac{8±6}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 6 ni ayirish.
x=1
2 ni 2 ga bo'lish.
x=7 x=1
Tenglama yechildi.
\left(4-x\right)^{2}=9
\left(4-x\right)^{2} hosil qilish uchun 4-x va 4-x ni ko'paytirish.
16-8x+x^{2}=9
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-x\right)^{2} kengaytirilishi uchun ishlating.
-8x+x^{2}=9-16
Ikkala tarafdan 16 ni ayirish.
-8x+x^{2}=-7
-7 olish uchun 9 dan 16 ni ayirish.
x^{2}-8x=-7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-7+16
-4 kvadratini chiqarish.
x^{2}-8x+16=9
-7 ni 16 ga qo'shish.
\left(x-4\right)^{2}=9
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=3 x-4=-3
Qisqartirish.
x=7 x=1
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}