Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12-7x+x^{2}=12
4-x ga 3-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
12-7x+x^{2}-12=0
Ikkala tarafdan 12 ni ayirish.
-7x+x^{2}=0
0 olish uchun 12 dan 12 ni ayirish.
x^{2}-7x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±7}{2}
\left(-7\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{7±7}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{14}{2}
x=\frac{7±7}{2} tenglamasini yeching, bunda ± musbat. 7 ni 7 ga qo'shish.
x=7
14 ni 2 ga bo'lish.
x=\frac{0}{2}
x=\frac{7±7}{2} tenglamasini yeching, bunda ± manfiy. 7 dan 7 ni ayirish.
x=0
0 ni 2 ga bo'lish.
x=7 x=0
Tenglama yechildi.
12-7x+x^{2}=12
4-x ga 3-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-7x+x^{2}=12-12
Ikkala tarafdan 12 ni ayirish.
-7x+x^{2}=0
0 olish uchun 12 dan 12 ni ayirish.
x^{2}-7x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
x=7 x=0
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.