Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+x-2=9
3x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+x-2-9=0
Ikkala tarafdan 9 ni ayirish.
3x^{2}+x-11=0
-11 olish uchun -2 dan 9 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-11\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 1 ni b va -11 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 3\left(-11\right)}}{2\times 3}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-12\left(-11\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+132}}{2\times 3}
-12 ni -11 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{133}}{2\times 3}
1 ni 132 ga qo'shish.
x=\frac{-1±\sqrt{133}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{133}-1}{6}
x=\frac{-1±\sqrt{133}}{6} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{133} ga qo'shish.
x=\frac{-\sqrt{133}-1}{6}
x=\frac{-1±\sqrt{133}}{6} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{133} ni ayirish.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
Tenglama yechildi.
3x^{2}+x-2=9
3x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+x=9+2
2 ni ikki tarafga qo’shing.
3x^{2}+x=11
11 olish uchun 9 va 2'ni qo'shing.
\frac{3x^{2}+x}{3}=\frac{11}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{1}{3}x=\frac{11}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{11}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{11}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{133}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{11}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{6}\right)^{2}=\frac{133}{36}
x^{2}+\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{133}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{6}=\frac{\sqrt{133}}{6} x+\frac{1}{6}=-\frac{\sqrt{133}}{6}
Qisqartirish.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.