x uchun yechish
x=\frac{\sqrt{271}}{24}-\frac{2}{3}\approx 0,019253235
x=-\frac{\sqrt{271}}{24}-\frac{2}{3}\approx -1,352586568
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(384x-0\right)\left(3x+4\right)=30
0 hosil qilish uchun 0 va 48 ni ko'paytirish.
3\left(384x-0\right)x+4\left(384x-0\right)=30
384x-0 ga 3x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3\left(384x-0\right)x+4\left(384x-0\right)-30=0
Ikkala tarafdan 30 ni ayirish.
3\times 384xx+4\times 384x-30=0
Shartlarni qayta saralash.
3\times 384x^{2}+4\times 384x-30=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
1152x^{2}+1536x-30=0
1152 hosil qilish uchun 3 va 384 ni ko'paytirish. 1536 hosil qilish uchun 4 va 384 ni ko'paytirish.
x=\frac{-1536±\sqrt{1536^{2}-4\times 1152\left(-30\right)}}{2\times 1152}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1152 ni a, 1536 ni b va -30 ni c bilan almashtiring.
x=\frac{-1536±\sqrt{2359296-4\times 1152\left(-30\right)}}{2\times 1152}
1536 kvadratini chiqarish.
x=\frac{-1536±\sqrt{2359296-4608\left(-30\right)}}{2\times 1152}
-4 ni 1152 marotabaga ko'paytirish.
x=\frac{-1536±\sqrt{2359296+138240}}{2\times 1152}
-4608 ni -30 marotabaga ko'paytirish.
x=\frac{-1536±\sqrt{2497536}}{2\times 1152}
2359296 ni 138240 ga qo'shish.
x=\frac{-1536±96\sqrt{271}}{2\times 1152}
2497536 ning kvadrat ildizini chiqarish.
x=\frac{-1536±96\sqrt{271}}{2304}
2 ni 1152 marotabaga ko'paytirish.
x=\frac{96\sqrt{271}-1536}{2304}
x=\frac{-1536±96\sqrt{271}}{2304} tenglamasini yeching, bunda ± musbat. -1536 ni 96\sqrt{271} ga qo'shish.
x=\frac{\sqrt{271}}{24}-\frac{2}{3}
-1536+96\sqrt{271} ni 2304 ga bo'lish.
x=\frac{-96\sqrt{271}-1536}{2304}
x=\frac{-1536±96\sqrt{271}}{2304} tenglamasini yeching, bunda ± manfiy. -1536 dan 96\sqrt{271} ni ayirish.
x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
-1536-96\sqrt{271} ni 2304 ga bo'lish.
x=\frac{\sqrt{271}}{24}-\frac{2}{3} x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
Tenglama yechildi.
\left(384x-0\right)\left(3x+4\right)=30
0 hosil qilish uchun 0 va 48 ni ko'paytirish.
3\left(384x-0\right)x+4\left(384x-0\right)=30
384x-0 ga 3x+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3\times 384xx+4\times 384x=30
Shartlarni qayta saralash.
3\times 384x^{2}+4\times 384x=30
x^{2} hosil qilish uchun x va x ni ko'paytirish.
1152x^{2}+1536x=30
1152 hosil qilish uchun 3 va 384 ni ko'paytirish. 1536 hosil qilish uchun 4 va 384 ni ko'paytirish.
\frac{1152x^{2}+1536x}{1152}=\frac{30}{1152}
Ikki tarafini 1152 ga bo‘ling.
x^{2}+\frac{1536}{1152}x=\frac{30}{1152}
1152 ga bo'lish 1152 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{3}x=\frac{30}{1152}
\frac{1536}{1152} ulushini 384 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{4}{3}x=\frac{5}{192}
\frac{30}{1152} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{5}{192}+\left(\frac{2}{3}\right)^{2}
\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{3} olish uchun. Keyin, \frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{5}{192}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{3} kvadratini chiqarish.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{271}{576}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{5}{192} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{2}{3}\right)^{2}=\frac{271}{576}
x^{2}+\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{271}{576}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{3}=\frac{\sqrt{271}}{24} x+\frac{2}{3}=-\frac{\sqrt{271}}{24}
Qisqartirish.
x=\frac{\sqrt{271}}{24}-\frac{2}{3} x=-\frac{\sqrt{271}}{24}-\frac{2}{3}
Tenglamaning ikkala tarafidan \frac{2}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}