Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

32x-2x^{2}=120
32-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
32x-2x^{2}-120=0
Ikkala tarafdan 120 ni ayirish.
-2x^{2}+32x-120=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-32±\sqrt{32^{2}-4\left(-2\right)\left(-120\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 32 ni b va -120 ni c bilan almashtiring.
x=\frac{-32±\sqrt{1024-4\left(-2\right)\left(-120\right)}}{2\left(-2\right)}
32 kvadratini chiqarish.
x=\frac{-32±\sqrt{1024+8\left(-120\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{1024-960}}{2\left(-2\right)}
8 ni -120 marotabaga ko'paytirish.
x=\frac{-32±\sqrt{64}}{2\left(-2\right)}
1024 ni -960 ga qo'shish.
x=\frac{-32±8}{2\left(-2\right)}
64 ning kvadrat ildizini chiqarish.
x=\frac{-32±8}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{24}{-4}
x=\frac{-32±8}{-4} tenglamasini yeching, bunda ± musbat. -32 ni 8 ga qo'shish.
x=6
-24 ni -4 ga bo'lish.
x=-\frac{40}{-4}
x=\frac{-32±8}{-4} tenglamasini yeching, bunda ± manfiy. -32 dan 8 ni ayirish.
x=10
-40 ni -4 ga bo'lish.
x=6 x=10
Tenglama yechildi.
32x-2x^{2}=120
32-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+32x=120
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+32x}{-2}=\frac{120}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{32}{-2}x=\frac{120}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-16x=\frac{120}{-2}
32 ni -2 ga bo'lish.
x^{2}-16x=-60
120 ni -2 ga bo'lish.
x^{2}-16x+\left(-8\right)^{2}=-60+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-60+64
-8 kvadratini chiqarish.
x^{2}-16x+64=4
-60 ni 64 ga qo'shish.
\left(x-8\right)^{2}=4
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=2 x-8=-2
Qisqartirish.
x=10 x=6
8 ni tenglamaning ikkala tarafiga qo'shish.