x uchun yechish
x=1
x=14
Grafik
Baham ko'rish
Klipbordga nusxa olish
300-90x+6x^{2}=216
30-3x ga 10-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
300-90x+6x^{2}-216=0
Ikkala tarafdan 216 ni ayirish.
84-90x+6x^{2}=0
84 olish uchun 300 dan 216 ni ayirish.
6x^{2}-90x+84=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 6\times 84}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -90 ni b va 84 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 6\times 84}}{2\times 6}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-24\times 84}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100-2016}}{2\times 6}
-24 ni 84 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{6084}}{2\times 6}
8100 ni -2016 ga qo'shish.
x=\frac{-\left(-90\right)±78}{2\times 6}
6084 ning kvadrat ildizini chiqarish.
x=\frac{90±78}{2\times 6}
-90 ning teskarisi 90 ga teng.
x=\frac{90±78}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{168}{12}
x=\frac{90±78}{12} tenglamasini yeching, bunda ± musbat. 90 ni 78 ga qo'shish.
x=14
168 ni 12 ga bo'lish.
x=\frac{12}{12}
x=\frac{90±78}{12} tenglamasini yeching, bunda ± manfiy. 90 dan 78 ni ayirish.
x=1
12 ni 12 ga bo'lish.
x=14 x=1
Tenglama yechildi.
300-90x+6x^{2}=216
30-3x ga 10-2x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-90x+6x^{2}=216-300
Ikkala tarafdan 300 ni ayirish.
-90x+6x^{2}=-84
-84 olish uchun 216 dan 300 ni ayirish.
6x^{2}-90x=-84
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6x^{2}-90x}{6}=-\frac{84}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{90}{6}\right)x=-\frac{84}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-15x=-\frac{84}{6}
-90 ni 6 ga bo'lish.
x^{2}-15x=-14
-84 ni 6 ga bo'lish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-14+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=-14+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{169}{4}
-14 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{169}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{13}{2} x-\frac{15}{2}=-\frac{13}{2}
Qisqartirish.
x=14 x=1
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}