x uchun yechish
x=100
Grafik
Baham ko'rish
Klipbordga nusxa olish
30000+910x-3x^{2}-30000-310x=30000
30+x ga 1000-3x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
910x-3x^{2}-310x=30000
0 olish uchun 30000 dan 30000 ni ayirish.
600x-3x^{2}=30000
600x ni olish uchun 910x va -310x ni birlashtirish.
600x-3x^{2}-30000=0
Ikkala tarafdan 30000 ni ayirish.
-3x^{2}+600x-30000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-600±\sqrt{600^{2}-4\left(-3\right)\left(-30000\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 600 ni b va -30000 ni c bilan almashtiring.
x=\frac{-600±\sqrt{360000-4\left(-3\right)\left(-30000\right)}}{2\left(-3\right)}
600 kvadratini chiqarish.
x=\frac{-600±\sqrt{360000+12\left(-30000\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{360000-360000}}{2\left(-3\right)}
12 ni -30000 marotabaga ko'paytirish.
x=\frac{-600±\sqrt{0}}{2\left(-3\right)}
360000 ni -360000 ga qo'shish.
x=-\frac{600}{2\left(-3\right)}
0 ning kvadrat ildizini chiqarish.
x=-\frac{600}{-6}
2 ni -3 marotabaga ko'paytirish.
x=100
-600 ni -6 ga bo'lish.
30000+910x-3x^{2}-30000-310x=30000
30+x ga 1000-3x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
910x-3x^{2}-310x=30000
0 olish uchun 30000 dan 30000 ni ayirish.
600x-3x^{2}=30000
600x ni olish uchun 910x va -310x ni birlashtirish.
-3x^{2}+600x=30000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+600x}{-3}=\frac{30000}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{600}{-3}x=\frac{30000}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-200x=\frac{30000}{-3}
600 ni -3 ga bo'lish.
x^{2}-200x=-10000
30000 ni -3 ga bo'lish.
x^{2}-200x+\left(-100\right)^{2}=-10000+\left(-100\right)^{2}
-200 ni bo‘lish, x shartining koeffitsienti, 2 ga -100 olish uchun. Keyin, -100 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-200x+10000=-10000+10000
-100 kvadratini chiqarish.
x^{2}-200x+10000=0
-10000 ni 10000 ga qo'shish.
\left(x-100\right)^{2}=0
x^{2}-200x+10000 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-100\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-100=0 x-100=0
Qisqartirish.
x=100 x=100
100 ni tenglamaning ikkala tarafiga qo'shish.
x=100
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}