x uchun yechish
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(2x\right)^{2}-1=12x-10
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
2^{2}x^{2}-1=12x-10
\left(2x\right)^{2} ni kengaytirish.
4x^{2}-1=12x-10
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1-12x=-10
Ikkala tarafdan 12x ni ayirish.
4x^{2}-1-12x+10=0
10 ni ikki tarafga qo’shing.
4x^{2}+9-12x=0
9 olish uchun -1 va 10'ni qo'shing.
4x^{2}-12x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -12 ni b va 9 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
-16 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
144 ni -144 ga qo'shish.
x=-\frac{-12}{2\times 4}
0 ning kvadrat ildizini chiqarish.
x=\frac{12}{2\times 4}
-12 ning teskarisi 12 ga teng.
x=\frac{12}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{3}{2}
\frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\left(2x\right)^{2}-1=12x-10
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
2^{2}x^{2}-1=12x-10
\left(2x\right)^{2} ni kengaytirish.
4x^{2}-1=12x-10
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1-12x=-10
Ikkala tarafdan 12x ni ayirish.
4x^{2}-12x=-10+1
1 ni ikki tarafga qo’shing.
4x^{2}-12x=-9
-9 olish uchun -10 va 1'ni qo'shing.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{9}{4}
-12 ni 4 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=0
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{4} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{2}\right)^{2}=0
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Qisqartirish.
x=\frac{3}{2} x=\frac{3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{3}{2}
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}