Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+x-3=15
2x+3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+x-3-15=0
Ikkala tarafdan 15 ni ayirish.
2x^{2}+x-18=0
-18 olish uchun -3 dan 15 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-18\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 1 ni b va -18 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 2\left(-18\right)}}{2\times 2}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-8\left(-18\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+144}}{2\times 2}
-8 ni -18 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{145}}{2\times 2}
1 ni 144 ga qo'shish.
x=\frac{-1±\sqrt{145}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{145}-1}{4}
x=\frac{-1±\sqrt{145}}{4} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{145} ga qo'shish.
x=\frac{-\sqrt{145}-1}{4}
x=\frac{-1±\sqrt{145}}{4} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{145} ni ayirish.
x=\frac{\sqrt{145}-1}{4} x=\frac{-\sqrt{145}-1}{4}
Tenglama yechildi.
2x^{2}+x-3=15
2x+3 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+x=15+3
3 ni ikki tarafga qo’shing.
2x^{2}+x=18
18 olish uchun 15 va 3'ni qo'shing.
\frac{2x^{2}+x}{2}=\frac{18}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{1}{2}x=\frac{18}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=9
18 ni 2 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=9+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=9+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{145}{16}
9 ni \frac{1}{16} ga qo'shish.
\left(x+\frac{1}{4}\right)^{2}=\frac{145}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{145}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{\sqrt{145}}{4} x+\frac{1}{4}=-\frac{\sqrt{145}}{4}
Qisqartirish.
x=\frac{\sqrt{145}-1}{4} x=\frac{-\sqrt{145}-1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.