Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(26-2x\right)x=80
26 olish uchun 25 va 1'ni qo'shing.
26x-2x^{2}=80
26-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
26x-2x^{2}-80=0
Ikkala tarafdan 80 ni ayirish.
-2x^{2}+26x-80=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-26±\sqrt{26^{2}-4\left(-2\right)\left(-80\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 26 ni b va -80 ni c bilan almashtiring.
x=\frac{-26±\sqrt{676-4\left(-2\right)\left(-80\right)}}{2\left(-2\right)}
26 kvadratini chiqarish.
x=\frac{-26±\sqrt{676+8\left(-80\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-26±\sqrt{676-640}}{2\left(-2\right)}
8 ni -80 marotabaga ko'paytirish.
x=\frac{-26±\sqrt{36}}{2\left(-2\right)}
676 ni -640 ga qo'shish.
x=\frac{-26±6}{2\left(-2\right)}
36 ning kvadrat ildizini chiqarish.
x=\frac{-26±6}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-\frac{20}{-4}
x=\frac{-26±6}{-4} tenglamasini yeching, bunda ± musbat. -26 ni 6 ga qo'shish.
x=5
-20 ni -4 ga bo'lish.
x=-\frac{32}{-4}
x=\frac{-26±6}{-4} tenglamasini yeching, bunda ± manfiy. -26 dan 6 ni ayirish.
x=8
-32 ni -4 ga bo'lish.
x=5 x=8
Tenglama yechildi.
\left(26-2x\right)x=80
26 olish uchun 25 va 1'ni qo'shing.
26x-2x^{2}=80
26-2x ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-2x^{2}+26x=80
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+26x}{-2}=\frac{80}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{26}{-2}x=\frac{80}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-13x=\frac{80}{-2}
26 ni -2 ga bo'lish.
x^{2}-13x=-40
80 ni -2 ga bo'lish.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-40+\left(-\frac{13}{2}\right)^{2}
-13 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{2} olish uchun. Keyin, -\frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-13x+\frac{169}{4}=-40+\frac{169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{2} kvadratini chiqarish.
x^{2}-13x+\frac{169}{4}=\frac{9}{4}
-40 ni \frac{169}{4} ga qo'shish.
\left(x-\frac{13}{2}\right)^{2}=\frac{9}{4}
x^{2}-13x+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{2}=\frac{3}{2} x-\frac{13}{2}=-\frac{3}{2}
Qisqartirish.
x=8 x=5
\frac{13}{2} ni tenglamaning ikkala tarafiga qo'shish.