y uchun yechish
y=\frac{14186}{13x^{2}}
x\neq 0
x uchun yechish (complex solution)
x=-\frac{\sqrt{184418}y^{-\frac{1}{2}}}{13}
x=\frac{\sqrt{184418}y^{-\frac{1}{2}}}{13}\text{, }y\neq 0
x uchun yechish
x=\frac{\sqrt{\frac{184418}{y}}}{13}
x=-\frac{\sqrt{\frac{184418}{y}}}{13}\text{, }y>0
Grafik
Baham ko'rish
Klipbordga nusxa olish
2020+2022+2023+2024+2025+2033+2039=13xxy
Tenglamaning ikkala tarafini 13 ga ko'paytirish.
2020+2022+2023+2024+2025+2033+2039=13x^{2}y
x^{2} hosil qilish uchun x va x ni ko'paytirish.
4042+2023+2024+2025+2033+2039=13x^{2}y
4042 olish uchun 2020 va 2022'ni qo'shing.
6065+2024+2025+2033+2039=13x^{2}y
6065 olish uchun 4042 va 2023'ni qo'shing.
8089+2025+2033+2039=13x^{2}y
8089 olish uchun 6065 va 2024'ni qo'shing.
10114+2033+2039=13x^{2}y
10114 olish uchun 8089 va 2025'ni qo'shing.
12147+2039=13x^{2}y
12147 olish uchun 10114 va 2033'ni qo'shing.
14186=13x^{2}y
14186 olish uchun 12147 va 2039'ni qo'shing.
13x^{2}y=14186
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{13x^{2}y}{13x^{2}}=\frac{14186}{13x^{2}}
Ikki tarafini 13x^{2} ga bo‘ling.
y=\frac{14186}{13x^{2}}
13x^{2} ga bo'lish 13x^{2} ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}